ترغب بنشر مسار تعليمي؟ اضغط هنا

Laserless quantum gates for electric dipoles in thermal motion

261   0   0.0 ( 0 )
 نشر من قبل Eric Hudson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Internal states of polar molecules can be controlled by microwave-frequency electric dipole transitions. If the applied microwave electric field has a spatial gradient, these transitions also affect the motion of these dipolar particles. This capability can be used to engineer phonon-mediated quantum gates between e.g. trapped polar molecular ion qubits without laser illumination and without the need for cooling near the motional ground state. The result is a high-speed quantum processing toolbox for dipoles in thermal motion that combines the precision microwave control of solid-state qubits with the long coherence times of trapped ion qubits.



قيم البحث

اقرأ أيضاً

351 - Amar C. Vutha 2014
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.
130 - Wesley C. Campbell 2020
High quality, fully-programmable quantum processors are available with small numbers (<1000) of qubits, and the scientific potential of these near term machines is not well understood. If the small number of physical qubits precludes practical quantu m error correction, how can these error-susceptible processors be used to perform useful tasks? We present a strategy for developing quantum error detection for certain gate imperfections that utilizes additional internal states and does not require additional physical qubits. Examples for adding error detection are provided for a universal gate set in the trapped ion platform. Error detection can be used to certify individual gate operations against certain errors, and the irreversible nature of the detection allows a result of a complex computation to be checked at the end for error flags.
Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio frequency or microwave radiation because the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms motion. The field gradients are negligible at these frequencies for freely propagating fields; however, stronger gradients can be generated in the near-field of microwave currents in structures smaller than the free-space wavelength. In the experiments reported here, we coherently manipulate the internal quantum states of the ions on time scales of 20 ns. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation. We implement both operations through the magnetic fields from microwave currents in electrodes that are integrated into the micro-fabricated trap structure and create an entangled state with fidelity 76(3) %. This approach, where the quantum control mechanism is integrated into the trapping device in a scalable manner, can potentially benefit quantum information processing, simulation and spectroscopy.
347 - L. Isenhower , M. Saffman , 2011
Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a $k$-atom controlled NOT (C$_k$NOT) neutral atom gate. Thi s gate can be implemented using sequential or simultaneous addressing of the control atoms which requires only $2k+3$ or 5 Rydberg $pi$ pulses respectively. A detailed error analysis relevant for implementations based on alkali atom Rydberg states is provided which shows that gate errors less than 10% are possible for $k=35$.
Ultracold atoms in optical lattices are an important platform for quantum information science, lending itself naturally to quantum simulation of many-body physics and providing a possible path towards a scalable quantum computer. To realize its full potential, atoms at individual lattice sites must be accessible to quantum control and measurement. This challenge has so far been met with a combination of high-resolution microscopes and resonance addressing that have enabled both site-resolved imaging and spin-flips. Here we show that methods borrowed from the field of inhomogeneous control can greatly increase the performance of resonance addressing in optical lattices, allowing us to target arbitrary single-qubit gates on desired sites, with minimal crosstalk to neighboring sites and greatly improved robustness against uncertainty in the lattice position. We further demonstrate the simultaneous implementation of different gates at adjacent sites with a single global control waveform. Coherence is verified through two-pulse Ramsey interrogation, and randomized benchmarking is used to measure an average gate fidelity of ~95%. Our control-based approach to reduce crosstalk and increase robustness is broadly applicable in optical lattices irrespective of geometry, and may be useful also on other platforms for quantum information processing, such as ion traps and nitrogen-vacancy centers in diamond.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا