ﻻ يوجد ملخص باللغة العربية
Context:In 2020 May-June, six solar energetic ion events were observed by the Parker Solar Probe/ISoIS instrument suite at 0.35 AU from the Sun. From standard velocity-dispersion analysis, the apparent ion path length is 0.625 AU at the onset of each event. Aims:We develop a formalism for estimating the path length of random-walking magnetic field lines, to explain why the apparent ion pathlength at event onset greatly exceeds the radial distance from the Sun for these events. Methods:We developed analytical estimates of the average increase in pathlength of random-walking magnetic field lines, relative to the unperturbed mean field. Monte Carlo simulations of fieldline and particle trajectories in a model of solar wind turbulence are used to validate the formalism and study the path lengths of particle guiding-center and full-orbital trajectories. The formalism is implemented in a global solar wind model, and results are compared with ion pathlengths inferred from ISoIS observations. Results:Both a simple estimate and a rigorous theoretical formulation are obtained for fieldlines pathlength increase as a function of pathlength along the large-scale field. From simulated fieldline and particle trajectories, we find that particle guiding centers can have pathlengths somewhat shorter than the average fieldline pathlength, while particle orbits can have substantially larger pathlengths due to their gyromotion with a nonzero effective pitch angle. Conclusions:The long apparent path length during these solar energetic ion events can be explained by 1) a magnetic field line path length increase due to the field line random walk, and 2) particle transport about the guiding center with a nonzero effective pitch angle. Our formalism for computing the magnetic field line path length, accounting for turbulent fluctuations, may be useful for application to solar particle transport in general.
We calculate the interplanetary magnetic field path lengths traveled by electrons in solar electron events detected by the WIND 3DP instrument from $1994$ to $2016$. The velocity dispersion analysis method is applied for electrons at energies of $sim
Knowing the lengthscales at which turbulent fluctuations dissipate is key to understanding the nature of weakly compressible magnetohydrodynamic turbulence. We use radio wavelength interferometric imaging observations which measure the extent to whic
Context. Current solar energetic particle (SEP) propagation models describe the effects of interplanetary plasma turbulence on SEPs as diffusion, using a Fokker-Planck (FP) equation. However, FP models cannot explain the observed fast access of SEPs
Energetic particle transport in the interplanetary medium is known to be affected by magnetic structures. It has been demonstrated for solar energetic particles in near-Earth orbit studies, and also for the more energetic cosmic rays. In this paper,
One of the striking observations from the Parker Solar Probe (PSP) spacecraft is the prevalence in the inner heliosphere of large amplitude, Alfvenic magnetic field reversals termed switchbacks. These $delta B_R/B sim mathcal{O}(1$) fluctuations occu