ترغب بنشر مسار تعليمي؟ اضغط هنا

Cryptanalysis of a code-based full-time signature

94   0   0.0 ( 0 )
 نشر من قبل Jean-Christophe Deneuville
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an attack against a code-based signature scheme based on the Lyubashevsky protocol that was recently proposed by Song, Huang, Mu, Wu and Wang (SHMWW). The private key in the SHMWW scheme contains columns coming in part from an identity matrix and in part from a random matrix. The existence of two types of columns leads to a strong bias in the distribution of set bits in produced signatures. Our attack exploits such a bias to recover the private key from a bunch of collected signatures. We provide a theoretical analysis of the attack along with experimental evaluations, and we show that as few as 10 signatures are enough to be collected for successfully recovering the private key. As for previous attempts of adapting Lyubashevskys protocol to the case of code-based cryptography, the SHMWW scheme is thus proved unable to provide acceptable security. This confirms that devising secure code-based signature schemes with efficiency comparable to that of other post-quantum solutions (e.g., based on lattices) is still a challenging task.



قيم البحث

اقرأ أيضاً

We solve an open question in code-based cryptography by introducing two provably secure group signature schemes from code-based assumptions. Our basic scheme satisfies the CPA-anonymity and traceability requirements in the random oracle model, assumi ng the hardness of the McEliece problem, the Learning Parity with Noise problem, and a variant of the Syndrome Decoding problem. The construction produces smaller key and signature sizes than the previous group signature schemes from lattices, as long as the cardinality of the underlying group does not exceed $2^{24}$, which is roughly comparable to the current population of the Netherlands. We develop the basic scheme further to achieve the strongest anonymity notion, i.e., CCA-anonymity, with a small overhead in terms of efficiency. The feasibility of two proposed schemes is supported by implementation results. Our two schemes are the first in their respective classes of provably secure groups signature schemes. Additionally, the techniques introduced in this work might be of independent interest. These are a new verifiable encryption protocol for the randomized McEliece encryption and a novel approach to design formal security reductions from the Syndrome Decoding problem.
Recently, a chaotic image encryption algorithm based on information entropy (IEAIE) was proposed. This paper scrutinizes the security properties of the algorithm and evaluates the validity of the used quantifiable security metrics. When the round num ber is only one, the equivalent secret key of every basic operation of IEAIE can be recovered with a differential attack separately. Some common insecurity problems in the field of chaotic image encryption are found in IEAIE, e.g. the short orbits of the digital chaotic system and the invalid sensitivity mechanism built on information entropy of the plain image. Even worse, each security metric is questionable, which undermines the security credibility of IEAIE. Hence, IEAIE can only serve as a counterexample for illustrating common pitfalls in designing secure communication method for image data.
Recently, an image encryption scheme based on a compound chaotic sequence was proposed. In this paper, the security of the scheme is studied and the following problems are found: (1) a differential chosen-plaintext attack can break the scheme with on ly three chosen plain-images; (2) there is a number of weak keys and some equivalent keys for encryption; (3) the scheme is not sensitive to the changes of plain-images; and (4) the compound chaotic sequence does not work as a good random number resource.
Recently Lin et al. proposed a method of using the underdetermined BSS (blind source separation) problem to realize image and speech encryption. In this paper, we give a cryptanalysis of this BSS-based encryption and point out that it is not secure a gainst known/chosen-plaintext attack and chosen-ciphertext attack. In addition, there exist some other security defects: low sensitivity to part of the key and the plaintext, a ciphertext-only differential attack, divide-and-conquer (DAC) attack on part of the key. We also discuss the role of BSS in Lin et al.s efforts towards cryptographically secure ciphers.
137 - Dima Ruinskiy , Adi Shamir , 2010
We introduce a new approach for cryptanalysis of key agreement protocols based on noncommutative groups. This approach uses functions that estimate the distance of a group element to a given subgroup. We test it against the Shpilrain-Ushakov protocol, which is based on Thompsons group F.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا