ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principles study of the electronic, magnetic, and crystal structure of perovskite molybdates

422   0   0.0 ( 0 )
 نشر من قبل Jeremy Lee-Hand
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The molybdate oxides SrMoO$_3$, PbMoO$_3$, and LaMoO$_3$ are a class of metallic perovskites that exhibit interesting properties including high mobility, and unusual resistivity behavior. We use first-principles methods based on density functional theory to explore the electronic, crystal, and magnetic structure of these materials. In order to account for the electron correlations in the partially-filled Mo $4d$ shell, a local Hubbard $U$ interaction is included. The value of $U$ is estimated via the constrained random-phase approximation approach, and the dependence of the results on the choice of $U$ are explored. For all materials, GGA+$U$ predicts a metal with an orthorhombic, antiferromagnetic structure. For LaMoO$_3$, the $Pnma$ space group is the most stable, while for SrMoO$_3$ and PbMoO$_3$, the $Imma$ and $Pnma$ structures are close in energy. The $R_4^+$ octahedral rotations for SrMoO$_3$ and PbMoO$_3$ are found to be overestimated compared to the experimental low-temperature structure.



قيم البحث

اقرأ أيضاً

109 - V.V. Bannikov 2014
The structural, elastic, magnetic properties, as well as electronic structure and chemical bonding picture of new oxide 3d1-perovskite BaVO3, recently synthesized, were systematically investigated involving the first-principles FLAPW-GGA calculations . The obtained results are discussed in comparison with available experimental data, as well as with those obtained before for isostructural and isoelectronic SrVO3 perovskite.
We report the understanding of the electronic band structure of $Cs_4CuSb_2Cl_{12}$ perovskite through first-principles density-functional theory calculations. We find that the most stable state has the antiferromagnetic configuration where each $[Cu Cl_6]$ octahedral chain along the [010] direction is antiferromagnetic. The reasonable band structure of the compound can be obtained only if both the correct magnetic order and the improved exchange interaction of the Cu $it{d}$ electrons are taken into account.
First principles study of structural, elastic, and electronic properties of the cubic perovskitetype BaHfO$_3$ has been performed using the plane wave ultrasoft pseudo-potential method based on density functional theory with revised Perdew-Burke-Ernz erhof exchange-correlation functional of the generalized gradient approximation (GGA-RPBE). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants (emph{C}$_{11}$, emph{C}$_{12}$, and emph{C}$_{44}$), bulk modules emph{B} and its pressure derivatives $B^{prime}$, compressibility $beta$, shear modulus emph{G}, Youngs modulus emph{Y}, Poissons ratio $ u$, and Lam{e} constants ($mu, lambda$) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO$_3$. The band structure calculations show that BaHfO$_3$ is a indirect bandgap material (R-$Gamma$ = 3.11 eV) derived basically from the occupied O 2emph{p} and unoccupied Hf 5emph{d} states, and it still awaits experimental confirmation. The density of states (total, site-projected, and emph{l}-decomposed) and the bonding charge density calculations make it clear that the covalent bonds exist between the Hf and O atoms and the ionic bonds exist between the Ba atoms and HfO$_3$ ionic groups in BaHfO$_3$. From our calculations, it is shown that BaHfO$_3$ should be promising as a candidate for synthesis and design of superhard materials due to the covalent bonding between the transition metal Hf 5emph{d} and O 2emph{p} states.
Alanates and boranates are studied intensively because of their potential use as hydrogen storage materials. In this paper we present a first-principles study of the electronic structure and the energetics of beryllium boranate, Be(BH4)2. From total energy calculations we show that - in contrast to the other boranates and alanates - hydrogen desorption directly to the elements is likely, and is at least competitive with desorption to the elemental hydride (BeH2). The formation enthalpy of Be(BH4)2 is only -0.12 eV/H2 (at T=0K). This low value can be rationalized by the participation of all atoms in the covalent bonding, in contrast to the ionic bonding observed in other boranates. From calculations of thermodynamic properties at finite temperature we estimate a decomposition temperature of 162 K at a pressure of 1 bar.
119 - Nirmal Ganguli , S. Acharya , 2014
We have studied the electronic structure of CdS/ZnSe coupled quantum dot, a novel heterostructure at the nano-scale. Our calculations reveal CdS/ZnSe coupled quantum dots to be of type-II in nature where the anion-p states play an important role in d eciding the band offset for the highest occupied molecular orbitals (HOMO). We show that the offsets of HOMO as well as the lowest unoccupied molecular orbitals (LUMO) can be tuned by changing the sizes of the components of the coupled quantum dot, thereby providing an additional control parameter to tune the band gap and the optical properties. Our investigations also suggest that formation of alloy near the interface has very little influence on the band offsets, although it affects the spatial localization of the quantum states from the individual components. Comparing the influence of strain on coupled quantum dots and core/shell nanowires, we find strain practically has no role in the electronic structure of coupled quantum dots as the small effective area of the interface in a coupled quantum dot helps a large part of the structure remain free from any substantial strain. We argue that in contrast to core-shell nanowires, quantum confinement is the key parameter that controls the electronic properties of coupled quantum dot and should therefore be an ideal candidate for the design of a quantum device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا