ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic Sunyaev-Zeldovich tomography with line-intensity mapping

117   0   0.0 ( 0 )
 نشر من قبل Gabriela Sato-Polito
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The kinetic Sunyaev-Zeldovich (kSZ) effect is a secondary cosmic microwave background (CMB) anisotropy induced by the scattering of CMB photons off intervening electrons. Through cross-correlations with tracers of large-scale structure, the kSZ effect can be used to reconstruct the 3-dimensional radial-velocity field, a technique known as kSZ tomography. We explore the cross-correlation between the CMB and line-intensity fluctuations to retrieve the late-time kSZ signal across a wide redshift range. We focus on the CII emission line, and predict the signal-to-noise ratio of the kSZ tomography signal between redshifts $z=1-5$ for upcoming experiments. We show that while instruments currently under construction may reach a low-significance detection of kSZ tomography, next-generation experiments will achieve greater sensitivity, with a detection significance of $mathcal{O}(10^2-10^3)$. Due to sample-variance cancellation, the cross-correlation between the reconstructed velocity field from kSZ tomography and intensity fluctuations can improve measurements of %the scale-dependent bias contributions from new physics to the power spectrum at large scales. To illustrate this improvement, we consider models of the early Universe that induce primordial local-type non-gaussianity and correlated compensated isocurvature perturbations. We show that with CMB-S4 and an AtLAST-like survey, the uncertainty on $f_{rm NL}$ and $A_{rm CIP}$ can be reduced by a factor of $sim 3$, achieving $sigma(f_{rm NL}) lesssim 1$. We further show that probing both low and high redshifts is crucial to break the degeneracy between the two parameters.



قيم البحث

اقرأ أيضاً

328 - Jiawei Shao , Taotao Fang 2016
We propose the use of the kinetic Sunyaev-Zeldovich (kSZ) effect to probe the circumgalactic medium (CGM), with the aid of a spectroscopic survey covering the same area of a SZ survey. One can design an optimal estimator of the kSZ effect of the CGM with a matched filter, and construct the cross correlation between the estimator and the peculiar velocity recovered from the galaxy survey, which can be measured by stacking a number of galaxies. We investigate two compelling profiles for the CGM, the MB profile (Maller & Bullock 2004) and the $beta$ profile, and estimate the detectability against the synergy of a fiducial galaxy survey with number density $10^{-3}h^3,$ Mpc$^{-3}$ and an ACT-like SZ survey. We show that the shape of the filter does not change much with redshift for the $beta$ profile, while there are significant side lobes at $z<0.1$ for the MB profile. By stacking $sim 10^4$ Milky Way-size halos around z $sim 0.5$, one can get $gtrsim$ 1 $sigma$ signal to noise (S/N) for the both profiles. The S/N increases with decreasing redshift before it reaches a maximum ($sim$ 7.5 at z $simeq$ 0.15 for the MB profile, $sim 19$ at $zsimeq 0.03$ for the $beta$ profile). Due to the large beam size, a Planck-like CMB survey can marginally detect the kSZ signal by stacking the same number of galaxies at $z<0.1$. The search for the CGM in realistic surveys will involve dividing the galaxies into subsamples with similar redshift and mass of host halos, and scaling the results presented here to obtain the S/N.
Measurement of the gas velocity distribution in galaxy clusters provides insight into the physics of mergers, through which large scale structures form in the Universe. Velocity estimates within the intracluster medium (ICM) can be obtained via the S unyaev-Zeldovich (SZ) effect, but its observation is challenging both in term of sensitivity requirement and control of systematic effects, including the removal of contaminants. In this paper we report resolved observations, at 150 and 260 GHz, of the SZ effect toward the triple merger MACS J0717.5+3745 (z=0.55), using data obtained with the NIKA camera at the IRAM 30m telescope. Assuming that the SZ signal is the sum of a thermal (tSZ) and a kinetic (kSZ) component and by combining the two NIKA bands, we extract for the first time a resolved map of the kSZ signal in a cluster. The kSZ signal is dominated by a dipolar structure that peaks at -5.1 and +3.4 sigma, corresponding to two subclusters moving respectively away and toward us and coincident with the cold dense X-ray core and a hot region undergoing a major merging event. We model the gas electron density and line-of-sight velocity of MACS J0717.5+3745 as four subclusters. Combining NIKA data with X-ray observations from XMM-Newton and Chandra, we fit this model to constrain the gas line-of-sight velocity of each component, and we also derive, for the first time, a velocity map from kSZ data (i.e. that is model-dependent). Our results are consistent with previous constraints on the merger velocities, and thanks to the high angular resolution of our data, we are able to resolve the structure of the gas velocity. Finally, we investigate possible contamination and systematic effects with a special care given to radio and submillimeter galaxies. Among the sources that we detect with NIKA, we find one which is likely to be a high redshift lensed submillimeter galaxy.
The detection and characterization of primordial gravitational waves through their impact on the polarization anisotropies of the cosmic microwave background (CMB) is a primary science goal of current and future observations of the CMB. An ancillary dataset that will become accessible with the great leaps in sensitivity of CMB experiments is the polarized Sunyaev Zeldovich (pSZ) effect, small-scale CMB polarization anisotropies induced by scattering from free electrons in the post-reionization Universe. The cross correlation of the pSZ effect with galaxy surveys, a technique known as pSZ tomography, can be used to reconstruct the remote quadrupole field: the CMB quadrupole observed from different locations in the Universe. Primordial gravitational waves leave a distinct imprint on the remote quadrupole field, making pSZ tomography a potential new method to characterize their properties. Building on previous work, we explore the utility of the full set of correlations between the primary CMB and the reconstructed remote quadrupole field to both provide exclusion limits on the amplitude of primordial gravitational waves, as well as to provide constraints on several phenomenological models of the tensor sector: axion gauge field inflation, general models with chiral tensors, and models with modified late-time decay of tensors. We find that relatively futuristic experimental requirements are necessary to provide competitive exclusion limits compared with the primary CMB. However, pSZ tomography can be a powerful probe of the late-time evolution of tensors and, through cross-correlations with the primary CMB, can provide mild improvements on parameter constraints in various models with chiral primordial gravitational waves.
We propose a novel technique to separate the late-time, post-reionization component of the kinetic Sunyaev-Zeldovich (kSZ) effect from the contribution to it from a (poorly understood and probably patchy) reionization history. The kSZ effect is one o f the most promising probe of the {em missing baryons} in the Universe. We study the possibility of reconstructing it in three dimensions (3D), using future spectroscopic surveys such as the Euclid survey. By reconstructing a 3D template from galaxy density and peculiar velocity fields from spectroscopic surveys we cross-correlate the estimator against CMB maps. The resulting cross-correlation can help us to map out the kSZ contribution to CMB in 3D as a function of redshift thereby extending previous results which use tomographic reconstruction. This allows the separation of the late time effect from the contribution owing to reionization. By construction, it avoids contamination from foregrounds, primary CMB, tSZ effect as well as from star forming galaxies. Due to a high number density of galaxies the signal-to-noise (S/N) for such cross-correlational studies are higher, compared to the studies involving CMB power spectrum analysis. Using a spherical Bessel-Fourier (sFB) transform we introduce a pair of 3D power-spectra: ${cal C}^{parallel}_ell(k)$ and ${cal C}^{perp}_ell(k)$ that can be used for this purpose. We find that in a future spectroscopic survey with near all-sky coverage and a survey depth of $zapprox 1$, reconstruction of ${cal C}^{perp}_ell(k)$ can be achieved in a few radial wave bands $kapprox(0.01-0.5 h^{-1}rm Mpc)$ with a S/N of upto ${cal O}(10)$ for angular harmonics in the range $ell=(200-2000)$ (abrdiged).
Line-Intensity Mapping is an emerging technique which promises new insights into the evolution of the Universe, from star formation at low redshifts to the epoch of reionization and cosmic dawn. It measures the integrated emission of atomic and molec ular spectral lines from galaxies and the intergalactic medium over a broad range of frequencies, using instruments with aperture requirements that are greatly relaxed relative to surveys for single objects. A coordinated, comprehensive, multi-line intensity-mapping experimental effort can efficiently probe over 80% of the volume of the observable Universe - a feat beyond the reach of other methods. Line-intensity mapping will uniquely address a wide array of pressing mysteries in galaxy evolution, cosmology, and fundamental physics. Among them are the cosmic history of star formation and galaxy evolution, the compositions of the interstellar and intergalactic media, the physical processes that take place during the epoch of reionization, cosmological inflation, the validity of Einsteins gravity theory on the largest scales, the nature of dark energy and the origin of dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا