ﻻ يوجد ملخص باللغة العربية
The kinetic Sunyaev-Zeldovich (kSZ) effect is a secondary cosmic microwave background (CMB) anisotropy induced by the scattering of CMB photons off intervening electrons. Through cross-correlations with tracers of large-scale structure, the kSZ effect can be used to reconstruct the 3-dimensional radial-velocity field, a technique known as kSZ tomography. We explore the cross-correlation between the CMB and line-intensity fluctuations to retrieve the late-time kSZ signal across a wide redshift range. We focus on the CII emission line, and predict the signal-to-noise ratio of the kSZ tomography signal between redshifts $z=1-5$ for upcoming experiments. We show that while instruments currently under construction may reach a low-significance detection of kSZ tomography, next-generation experiments will achieve greater sensitivity, with a detection significance of $mathcal{O}(10^2-10^3)$. Due to sample-variance cancellation, the cross-correlation between the reconstructed velocity field from kSZ tomography and intensity fluctuations can improve measurements of %the scale-dependent bias contributions from new physics to the power spectrum at large scales. To illustrate this improvement, we consider models of the early Universe that induce primordial local-type non-gaussianity and correlated compensated isocurvature perturbations. We show that with CMB-S4 and an AtLAST-like survey, the uncertainty on $f_{rm NL}$ and $A_{rm CIP}$ can be reduced by a factor of $sim 3$, achieving $sigma(f_{rm NL}) lesssim 1$. We further show that probing both low and high redshifts is crucial to break the degeneracy between the two parameters.
We propose the use of the kinetic Sunyaev-Zeldovich (kSZ) effect to probe the circumgalactic medium (CGM), with the aid of a spectroscopic survey covering the same area of a SZ survey. One can design an optimal estimator of the kSZ effect of the CGM
Measurement of the gas velocity distribution in galaxy clusters provides insight into the physics of mergers, through which large scale structures form in the Universe. Velocity estimates within the intracluster medium (ICM) can be obtained via the S
The detection and characterization of primordial gravitational waves through their impact on the polarization anisotropies of the cosmic microwave background (CMB) is a primary science goal of current and future observations of the CMB. An ancillary
We propose a novel technique to separate the late-time, post-reionization component of the kinetic Sunyaev-Zeldovich (kSZ) effect from the contribution to it from a (poorly understood and probably patchy) reionization history. The kSZ effect is one o
Line-Intensity Mapping is an emerging technique which promises new insights into the evolution of the Universe, from star formation at low redshifts to the epoch of reionization and cosmic dawn. It measures the integrated emission of atomic and molec