ﻻ يوجد ملخص باللغة العربية
Hermitian tensors are natural generalizations of Hermitian matrices, while possessing rather different properties. A Hermitian tensor is separable if it has a Hermitian decomposition with only positive coefficients, i.e., it is a sum of rank-1 psd Hermitian tensors. This paper studies how to detect separability of Hermitian tensors. It is equivalent to the long-standing quantum separability problem in quantum physics, which asks to tell if a given quantum state is entangled or not. We formulate this as a truncated moment problem and then provide a semidefinite relaxation algorithm to solve it. Moreover, we study psd decompositions of separable Hermitian tensors. When the psd rank is low, we first flatten them into cubic order tensors and then apply tensor decomposition methods to compute psd decompositions. We prove that this method works well if the psd rank is low. In computation, this flattening approach can detect separability for much larger sized Hermitian tensors. This method is a good start on determining psd ranks of separable Hermitian tensors.
Hermitian tensors are generalizations of Hermitian matrices, but they have very different properties. Every complex Hermitian tensor is a sum of complex Hermitian rank-1 tensors. However, this is not true for the real case. We study basic properties
We study the problem of approximating the cone of positive semidefinite (PSD) matrices with a cone that can be described by smaller-sized PSD constraints. Specifically, we ask the question: how closely can we approximate the set of unit-trace $n time
In this paper, one of our main purposes is to prove the boundedness of solution set of tensor complementarity problem with B tensor such that the specific bounds only depend on the structural properties of tensor. To achieve this purpose, firstly, we
We combine stochastic control methods, white noise analysis and Hida-Malliavin calculus applied to the Donsker delta functional to obtain new representations of semimartingale decompositions under enlargement of filtrations. The results are illustrated by explicit examples.
Hilbert-Schmidt (HS) decompositions are employed for analyzing systems of n-qubits, and a qubit with a qudit. Negative eigenvalues, obtained by partial-transpose (PT) plus local unitary transformations (PTU) for one qubit from the whole system, are u