ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative Probing of Lexical Semantics Theories for Cognitive Plausibility and Technological Usefulness

125   0   0.0 ( 0 )
 نشر من قبل Jo\\~ao Rodrigues
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Lexical semantics theories differ in advocating that the meaning of words is represented as an inference graph, a feature mapping or a vector space, thus raising the question: is it the case that one of these approaches is superior to the others in representing lexical semantics appropriately? Or in its non antagonistic counterpart: could there be a unified account of lexical semantics where these approaches seamlessly emerge as (partial) renderings of (different) aspects of a core semantic knowledge base? In this paper, we contribute to these research questions with a number of experiments that systematically probe different lexical semantics theories for their levels of cognitive plausibility and of technological usefulness. The empirical findings obtained from these experiments advance our insight on lexical semantics as the feature-based approach emerges as superior to the other ones, and arguably also move us closer to finding answers to the research questions above.



قيم البحث

اقرأ أيضاً

142 - Yile Wang , Leyang Cui , Yue Zhang 2019
Contextualized embeddings such as BERT can serve as strong input representations to NLP tasks, outperforming their static embeddings counterparts such as skip-gram, CBOW and GloVe. However, such embeddings are dynamic, calculated according to a sente nce-level context, which limits their use in lexical semantics tasks. We address this issue by making use of dynamic embeddings as word representations in training static embeddings, thereby leveraging their strong representation power for disambiguating context information. Results show that this method leads to improvements over traditional static embeddings on a range of lexical semantics tasks, obtaining the best reported results on seven datasets.
We present an approach to combining distributional semantic representations induced from text corpora with manually constructed lexical-semantic networks. While both kinds of semantic resources are available with high lexical coverage, our aligned re source combines the domain specificity and availability of contextual information from distributional models with the conciseness and high quality of manually crafted lexical networks. We start with a distributional representation of induced senses of vocabulary terms, which are accompanied with rich context information given by related lexical items. We then automatically disambiguate such representations to obtain a full-fledged proto-conceptualization, i.e. a typed graph of induced word senses. In a final step, this proto-conceptualization is aligned to a lexical ontology, resulting in a hybrid aligned resource. Moreover, unmapped induced senses are associated with a semantic type in order to connect them to the core resource. Manual evaluations against ground-truth judgments for different stages of our method as well as an extrinsic evaluation on a knowledge-based Word Sense Disambiguation benchmark all indicate the high quality of the new hybrid resource. Additionally, we show the benefits of enriching top-down lexical knowledge resources with bottom-up distributional information from text for addressing high-end knowledge acquisition tasks such as cleaning hypernym graphs and learning taxonomies from scratch.
62 - Jussi Karlgren 2021
This paper describes how the current lexical similarity and analogy gold standards are built to conform to certain ideas about what the models they are designed to evaluate are used for. Topical relevance has always been the most important target not ion for information access tools and related language technology technologies, and while this has proven a useful starting point for much of what information technology is used for, it does not always align well with other uses to which technologies are being put, most notably use cases from digital scholarship in the humanities or social sciences. This paper argues for more systematic formulation of requirements from the digital humanities and social sciences and more explicit description of the assumptions underlying model design.
Building robust natural language understanding systems will require a clear characterization of whether and how various linguistic meaning representations complement each other. To perform a systematic comparative analysis, we evaluate the mapping be tween meaning representations from different frameworks using two complementary methods: (i) a rule-based converter, and (ii) a supervised delexicalized parser that parses to one framework using only information from the other as features. We apply these methods to convert the STREUSLE corpus (with syntactic and lexical semantic annotations) to UCCA (a graph-structured full-sentence meaning representation). Both methods yield surprisingly accurate target representations, close to fully supervised UCCA parser quality---indicating that UCCA annotations are partially redundant with STREUSLE annotations. Despite this substantial convergence between frameworks, we find several important areas of divergence.
Researchers illustrate improvements in contextual encoding strategies via resultant performance on a battery of shared Natural Language Understanding (NLU) tasks. Many of these tasks are of a categorical prediction variety: given a conditioning conte xt (e.g., an NLI premise), provide a label based on an associated prompt (e.g., an NLI hypothesis). The categorical nature of these tasks has led to common use of a cross entropy log-loss objective during training. We suggest this loss is intuitively wrong when applied to plausibility tasks, where the prompt by design is neither categorically entailed nor contradictory given the context. Log-loss naturally drives models to assign scores near 0.0 or 1.0, in contrast to our proposed use of a margin-based loss. Following a discussion of our intuition, we describe a confirmation study based on an extreme, synthetically curated task derived from MultiNLI. We find that a margin-based loss leads to a more plausible model of plausibility. Finally, we illustrate improvements on the Choice Of Plausible Alternative (COPA) task through this change in loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا