ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven quantitative modeling of bacterial active nematics

92   0   0.0 ( 0 )
 نشر من قبل Hepeng Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Active matter comprises individual units that convert energy into mechanical motion. In many examples, such as bacterial systems and biofilament assays, constituent units are elongated and can give rise to local nematic orientational order. Such `active nematics systems have attracted much attention from both theorists and experimentalists. However, despite intense research efforts, data-driven quantitative modeling has not been achieved, a situation mainly due to the lack of systematic experimental data and to the large number of parameters of current models. Here we introduce a new active nematics system made of swarming filamentous bacteria. We simultaneously measure orientation and velocity fields and show that the complex spatiotemporal dynamics of our system can be quantitatively reproduced by a new type of microscopic model for active suspensions whose important parameters are all estimated from comprehensive experimental data. This provides unprecedented access to key effective parameters and mechanisms governing active nematics. Our approach is applicable to different types of dense suspensions and shows a path towards more quantitative active matter research.

قيم البحث

اقرأ أيضاً

We study dry, dense active nematics at both particle and continuous levels. Specifically, extending the Boltzmann-Ginzburg-Landau approach, we derive well-behaved hydrodynamic equations from a Vicsek-style model with nematic alignment and pairwise re pulsion. An extensive study of the phase diagram shows qualitative agreement between the two levels of description. We find in particular that the dynamics of topological defects strongly depends on parameters and can lead to ``arch solutions forming a globally polar, smectic arrangement of Neel walls. We show how these configurations are at the origin of the defect ordered states reported previously. This work offers a detailed understanding of the theoretical description of dense active nematics directly rooted in their microscopic dynamics.
Controlling the phases of matter is a challenge that spans from condensed materials to biological systems. Here, by imposing a geometric boundary condition, we study controlled collective motion of Escherichia coli bacteria. A circular microwell isol ates a rectified vortex from disordered vortices masked in bulk. For a doublet of microwells, two vortices emerge but their spinning directions show transition from parallel to anti-parallel. A Vicsek-like model for confined self-propelled particles gives the point where two spinning patterns occur in equal probability and one geometric quantity governs the transition as seen in experiments. This mechanism shapes rich patterns including chiral configurations in a quadruplet of microwells, thus revealing a design principle of active vortices.
Turbulence in driven stratified active matter is considered. The relevant parameters characterizing the problem are the Reynolds number Re and an active matter Richardson-like number,R. In the mixing limit,Re>>1, R<<1, we show that the standard Kolmo gorov energy spectrum 5/3 law is realized. On the other hand, in the stratified limit, Re>>1,R>>1, there is a new turbulence universality class with a 7/5 law. The crossover from one regime to the other is discussed in detail. Experimental predictions and probes are also discussed.
Transport of a moving V-shaped barrier exposed to a bath of chiral active particles is investigated in a two-dimensional channel. Due to the chirality of active particles and the transversal asymmetry of the barrier position, active particles can pow er and steer the directed transport of the barrier in the longitudinal direction. The transport of the barrier is determined by the chirality of active particles. The moving barrier and active particles move in the opposite directions. The average velocity of the barrier is much larger than that of active particles. There exist optimal parameters (the chirality, the self-propulsion speed, the packing fraction, and the channel width) at which the average velocity of the barrier takes its maximal value. In particular, tailoring the geometry of the barrier and the active concentration provides novel strategies to control the transport properties of micro-objects or cargoes in an active medium.
We examine the scaling with activity of the emergent length scales that control the nonequilibrium dynamics of an active nematic liquid crystal, using two popular hydrodynamic models that have been employed in previous studies. In both models we find that the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence is controlled by a single active scale determined by the balance of active and elastic stresses, regardless of whether the active stress is extensile or contractile in nature. The observed scaling of the kinetic energy and enstropy with activity is consistent with our single-length scale argument and simple dimensional analysis. Our results provide a unified understanding of apparent discrepancies in the previous literature and demonstrate that the essential physics is robust to the choice of model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا