ﻻ يوجد ملخص باللغة العربية
The study deals with the ruin problem when an insurance company having two business branches, life insurance and non-life insurance, invests its reserve into a risky asset with the price dynamics given by a geometric Brownian motion. We prove a result on smoothness of the ruin probability as a function of the initial capital and obtain for it an integro-differential equation understood in the classical sense. For the case of exponentially distributed jumps we show that the survival probability is a solution of an ordinary differential equation of the 4th order. Asymptotic analysis of the latter leads to the conclusion that the ruin probability decays to zero in the same way as in the already studied cases of models with one-side jumps.
Our work aims to study the tail behaviour of weighted sums of the form $sum_{i=1}^{infty} X_{i} prod_{j=1}^{i}Y_{j}$, where $(X_{i}, Y_{i})$ are independent and identically distributed, with common joint distribution bivariate Sarmanov. Such quantiti
We give asymptotic analysis for probability of absorbtion $mathsf{P}(tau_0le T)$ on the interval $[0,T]$, where $ tau_0=inf{t:X_t=0}$ and $X_t$ is a nonnegative diffusion process relative to Brownian motion $B_t$, dX_t&=mu X_tdt+sigma X^gamma_tdB_t.
In this paper we give few expressions and asymptotics of ruin probabilities for a Markov modulated risk process for various regimes of a time horizon, initial reserves and a claim size distribution. We also consider f
This paper develops asymptotics and approximations for ruin probabilities in a multivariate risk setting. We consider a model in which the individual reserve processes are driven by a common Markovian environmental process. We subsequently consider a
We consider the classical Cramer-Lundberg risk model with claim sizes that are mixtures of phase-type and subexponential variables. Exploiting a specific geometric compound representation, we propose control variate techniques to efficiently simulate