ﻻ يوجد ملخص باللغة العربية
Magnon transport through a magnetic insulator can be controlled by current-biased heavy-metal gates that modulate the magnon conductivity via the magnon density. Here, we report nonlinear modulation effects in 10$,$nm thick yttrium iron garnet (YIG) films. The modulation efficiency is larger than 40%/mA. The spin transport signal at high DC current density (2.2$times 10^{11},$A/m$^{2}$) saturates for a 400$,$nm wide Pt gate, which indicates that even at high current levels a magnetic instability cannot be reached in spite of the high magnetic quality of the films.
Quantitative understanding of the relationship between quantum tunneling and Fermi surface spin polarization is key to device design using topological insulator surface states. By using spin-resolved photoemission spectroscopy with p-polarized light
We investigate the transfer and control of nonreciprocity through magnons themselves in permalloy thin films deposited on surface oxide silicon substrate. Evidences of nonreciprocal emergence of hybridized dipole exchange magnons (spin waves) at two
We investigate the optical properties of an ultrathin film of a topological insulator in the presence of an in-plane magnetic field. We show that due to the combination of the overlap between the surface states of the two layers and the magnetic fiel
We investigate the electron transport properties of a model magnetic molecule formed by two magnetic centers whose exchange coupling can be altered with a longitudinal electric field. In general we find a negative differential conductance at low temp
Recent transport experiments in spatially modulated quasi-1D structures created on top of LaAlO$_3$/SrTiO$_3$ interfaces have revealed some interesting features, including phenomena conspicuously absent without the modulation. In this work, we focus