ﻻ يوجد ملخص باللغة العربية
During retinal microsurgery, precise manipulation of the delicate retinal tissue is required for positive surgical outcome. However, accurate manipulation and navigation of surgical tools remain difficult due to a constrained workspace and the top-down view during the surgery, which limits the surgeons ability to estimate depth. To alleviate such difficulty, we propose to automate the tool-navigation task by learning to predict relative goal position on the retinal surface from the current tool-tip position. Given an estimated target on the retina, we generate an optimal trajectory leading to the predicted goal while imposing safety-related physical constraints aimed to minimize tissue damage. As an extended task, we generate goal predictions to various points across the retina to localize eye geometry and further generate safe trajectories within the estimated confines. Through experiments in both simulation and with several eye phantoms, we demonstrate that our framework can permit navigation to various points on the retina within 0.089mm and 0.118mm in xy error which is less than the humans surgeon mean tremor at the tool-tip of 0.180mm. All safety constraints were fulfilled and the algorithm was robust to previously unseen eyes as well as unseen objects in the scene. Live video demonstration is available here: https://youtu.be/n5j5jCCelXk
While robot learning has demonstrated promising results for enabling robots to automatically acquire new skills, a critical challenge in deploying learning-based systems is scale: acquiring enough data for the robot to effectively generalize broadly.
Ophthalmic microsurgery is known to be a challenging operation, which requires very precise and dexterous manipulation. Image guided robot-assisted surgery (RAS) is a promising solution that brings significant improvements in outcomes and reduces the
Vitreoretinal surgery is challenging even for expert surgeons owing to the delicate target tissues and the diminutive 7-mm-diameter workspace in the retina. In addition to improved dexterity and accuracy, robot assistance allows for (partial) task au
We develop optimal control strategies for Autonomous Vehicles (AVs) that are required to meet complex specifications imposed by traffic laws and cultural expectations of reasonable driving behavior. We formulate these specifications as rules, and spe
Autonomous driving in multi-agent and dynamic traffic scenarios is challenging, where the behaviors of other road agents are uncertain and hard to model explicitly, and the ego-vehicle should apply complicated negotiation skills with them to achieve