ترغب بنشر مسار تعليمي؟ اضغط هنا

SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on Medical Images

64   0   0.0 ( 0 )
 نشر من قبل Chang Qi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently deep learning methods, in particular, convolutional neural networks (CNNs), have led to a massive breakthrough in the range of computer vision. Also, the large-scale annotated dataset is the essential key to a successful training procedure. However, it is a huge challenge to get such datasets in the medical domain. Towards this, we present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs). We add semi-supervised attention modules to generate images with convincing details. We treat tumor images and normal images as two domains. The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image. Furthermore, we show that generated medical images can be used for improving the performance of ResNet18 for medical image classification. Our model is applied to three limited datasets of tumor MRI images. We first generate MRI images on limited datasets, then we trained three popular classification models to get the best model for tumor classification. Finally, we train the classification model using real images with classic data augmentation methods and classification models using synthetic images. The classification results between those trained models showed that the proposed SAG-GAN data augmentation method can boost Accuracy and AUC compare with classic data augmentation methods. We believe the proposed data augmentation method can apply to other medical image domains, and improve the accuracy of computer-assisted diagnosis.



قيم البحث

اقرأ أيضاً

The Corona Virus (COVID-19) is an internationalpandemic that has quickly propagated throughout the world. The application of deep learning for image classification of chest X-ray images of Covid-19 patients, could become a novel pre-diagnostic detect ion methodology. However, deep learning architectures require large labelled datasets. This is often a limitation when the subject of research is relatively new as in the case of the virus outbreak, where dealing with small labelled datasets is a challenge. Moreover, in the context of a new highly infectious disease, the datasets are also highly imbalanced,with few observations from positive cases of the new disease. In this work we evaluate the performance of the semi-supervised deep learning architecture known as MixMatch using a very limited number of labelled observations and highly imbalanced labelled dataset. We propose a simple approach for correcting data imbalance, re-weight each observationin the loss function, giving a higher weight to the observationscorresponding to the under-represented class. For unlabelled observations, we propose the usage of the pseudo and augmentedlabels calculated by MixMatch to choose the appropriate weight. The MixMatch method combined with the proposed pseudo-label based balance correction improved classification accuracy by up to 10%, with respect to the non balanced MixMatch algorithm, with statistical significance. We tested our proposed approach with several available datasets using 10, 15 and 20 labelledobservations. Additionally, a new dataset is included among thetested datasets, composed of chest X-ray images of Costa Rican adult patients
60 - Ayaan Haque 2020
Semi-supervised learning has been gaining attention as it allows for performing image analysis tasks such as classification with limited labeled data. Some popular algorithms using Generative Adversarial Networks (GANs) for semi-supervised classifica tion share a single architecture for classification and discrimination. However, this may require a model to converge to a separate data distribution for each task, which may reduce overall performance. While progress in semi-supervised learning has been made, less addressed are small-scale, fully-supervised tasks where even unlabeled data is unavailable and unattainable. We therefore, propose a novel GAN model namely External Classifier GAN (EC-GAN), that utilizes GANs and semi-supervised algorithms to improve classification in fully-supervised regimes. Our method leverages a GAN to generate artificial data used to supplement supervised classification. More specifically, we attach an external classifier, hence the name EC-GAN, to the GANs generator, as opposed to sharing an architecture with the discriminator. Our experiments demonstrate that EC-GANs performance is comparable to the shared architecture method, far superior to the standard data augmentation and regularization-based approach, and effective on a small, realistic dataset.
Supervised learning method requires a large volume of annotated datasets. Collecting such datasets is time-consuming and expensive. Until now, very few annotated COVID-19 imaging datasets are available. Although self-supervised learning enables us to bootstrap the training by exploiting unlabeled data, the generic self-supervised methods for natural images do not sufficiently incorporate the context. For medical images, a desirable method should be sensitive enough to detect deviation from normal-appearing tissue of each anatomical region; here, anatomy is the context. We introduce a novel approach with two levels of self-supervised representation learning objectives: one on the regional anatomical level and another on the patient-level. We use graph neural networks to incorporate the relationship between different anatomical regions. The structure of the graph is informed by anatomical correspondences between each patient and an anatomical atlas. In addition, the graph representation has the advantage of handling any arbitrarily sized image in full resolution. Experiments on large-scale Computer Tomography (CT) datasets of lung images show that our approach compares favorably to baseline methods that do not account for the context. We use the learnt embedding to quantify the clinical progression of COVID-19 and show that our method generalizes well to COVID-19 patients from different hospitals. Qualitative results suggest that our model can identify clinically relevant regions in the images.
Ultrasound (US) is widely accepted in clinic for anatomical structure inspection. However, lacking in resources to practice US scan, novices often struggle to learn the operation skills. Also, in the deep learning era, automated US image analysis is limited by the lack of annotated samples. Efficiently synthesizing realistic, editable and high resolution US images can solve the problems. The task is challenging and previous methods can only partially complete it. In this paper, we devise a new framework for US image synthesis. Particularly, we firstly adopt a sketch generative adversarial networks (Sgan) to introduce background sketch upon object mask in a conditioned generative adversarial network. With enriched sketch cues, Sgan can generate realistic US images with editable and fine-grained structure details. Although effective, Sgan is hard to generate high resolution US images. To achieve this, we further implant the Sgan into a progressive growing scheme (PGSgan). By smoothly growing both generator and discriminator, PGSgan can gradually synthesize US images from low to high resolution. By synthesizing ovary and follicle US images, our extensive perceptual evaluation, user study and segmentation results prove the promising efficacy and efficiency of the proposed PGSgan.
With the development of deep encoder-decoder architectures and large-scale annotated medical datasets, great progress has been achieved in the development of automatic medical image segmentation. Due to the stacking of convolution layers and the cons ecutive sampling operations, existing standard models inevitably encounter the information recession problem of feature representations, which fails to fully model the global contextual feature dependencies. To overcome the above challenges, this paper proposes a novel Transformer based medical image semantic segmentation framework called TransAttUnet, in which the multi-level guided attention and multi-scale skip connection are jointly designed to effectively enhance the functionality and flexibility of traditional U-shaped architecture. Inspired by Transformer, a novel self-aware attention (SAA) module with both Transformer Self Attention (TSA) and Global Spatial Attention (GSA) is incorporated into TransAttUnet to effectively learn the non-local interactions between encoder features. In particular, we also establish additional multi-scale skip connections between decoder blocks to aggregate the different semantic-scale upsampling features. In this way, the representation ability of multi-scale context information is strengthened to generate discriminative features. Benefitting from these complementary components, the proposed TransAttUnet can effectively alleviate the loss of fine details caused by the information recession problem, improving the diagnostic sensitivity and segmentation quality of medical image analysis. Extensive experiments on multiple medical image segmentation datasets of different imaging demonstrate that our method consistently outperforms the state-of-the-art baselines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا