ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Photometric Variability of Very Low Mass Stars in IC 348: Detection of Superflare in an M-dwarf

116   0   0.0 ( 0 )
 نشر من قبل Samrat Ghosh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Samrat Ghosh




اسأل ChatGPT حول البحث

We present here optical I-band photometric variability study down to $simeq$ 19 mag of a young ($sim$2-3 Myr) star-forming region IC 348 in the Perseus molecular cloud. We aim to explore the fast rotation (in the time-scales of hours) in Very Low Mass stars (VLMs) including Brown Dwarfs (BDs). From a sample of 177 light-curves using our new I-band observations, we detect new photometric variability in 22 young M-dwarfs including 6 BDs, which are bonafide members in IC 348 and well-characterized in the spectral type of M-dwarfs. Out of 22 variables, 11 M dwarfs including one BD show hour-scale periodic variability in the period range 3.5 - 11 hours and rest are aperiodic in nature. Interestingly, an optical flare is detected in a young M2.75 dwarf in one night data on 20 December 2016. From the flare light curve, we estimate the emitted flared energy of 1.48 $times$ 10$^{35}$ ergs. The observed flared energy with an uncertainty of tens of per cent is close to the super-flare range ($sim$ 10$^{34}$ ergs), which is rarely observed in active M dwarfs.

قيم البحث

اقرأ أيضاً

We have monitored nearly a square degree in IC 1396A/Tr 37 over 21 epochs extending over 2014 - 2016 for sources variable in the JHK bands. In our data, 65 +- 8 % of previously identified cluster members show variations, compared with < 0.3% of field stars. We identify 119 members of Tr 37 on the basis of variability, forming an unbiased sample down to the brown dwarf regime. The K-band luminosity function in Tr 37 is similar to that of IC 348 but shifted to somewhat brighter values, implying that the K- and M-type members of Tr 37 are younger than those in IC 348. We introduce methods to classify the causes of variability, based on behavior in the color-color and color-magnitude diagrams. Accretion hot spots cause larger variations at J than at K with substantial scatter in the diagrams; there are at least a dozen, with the most active resembling EXors. Eleven sources are probably dominated by intervention of dust clumps in their circumstellar disks with color behavior indicating the presence of grains larger than for interstellar dust, presumably due to grain growth in their disks. Thirteen sources have larger variations at K than at J or H. For 11 of them, the temperature fitted to the variable component is very close to 2000K, suggesting that the changes in output are caused by turbulence at the inner rim of the circumstellar disk exposing previously protected populations of grains.
118 - J.D. Hartman 2009
Using light curves from the HATNet survey for transiting extrasolar planets we investigate the optical broad-band photometric variability of a sample of 27,560 field K and M dwarfs selected by color and proper-motion. A total of 2120 stars exhibit po tential variability, including 95 stars with eclipses and 60 stars with flares. Based on a visual inspection of these light curves and an automated blending classification, we select 1568 stars, including 78 eclipsing binaries, as secure variable star detections that are not obvious blends. We estimate that a further ~26% of these stars may be blends with fainter variables, though most of these blends are likely to be among the hotter stars in our sample. We find that only 38 of the 1568 stars, including 5 of the eclipsing binaries, have previously been identified as variables or are blended with previously identified variables. One of the newly identified eclipsing binaries is 1RXS J154727.5+450803, a known P = 3.55 day, late M-dwarf SB2 system, for which we derive preliminary estimates for the component masses and radii of M_1 = M_2 = 0.258 +- 0.008 M_Sun and R_1 = R_2 = 0.289 +- 0.007 R_Sun. The radii of the component stars are larger than theoretical expectations if the system is older than ~200 Myr. The majority of the variables are heavily spotted BY Dra-type stars for which we determine rotation periods. Using this sample, we investigate the relations between period, color, age, and activity measures, including optical flaring, for K and M dwarfs., finding that many of the well-established relations for F, G and K dwarfs continue into the M dwarf regime (Abridged).
This work brings a wavelet analysis for 14 Kepler white dwarf stars, in order to confirm their photometric variability behavior and to search for periodicities in these targets. From the observed Kepler light curves we obtained the wavelet local and global power spectra. Through this procedure, one can perform an analysis in time-frequency domain rich in details, and so to obtain a new perspective on the time evolution of the periodicities present in these stars. We identified a photometric variability behavior in ten white dwarfs, corresponding to period variations of ~ 2 h to 18 days: among these stars, three are new candidates and seven, earlier identified from other studies, are confirmed.
112 - Alexander Scholz 2009
We present the combined results of three photometric monitoring campaigns targeting very low mass (VLM) stars and brown dwarfs in the young open cluster IC4665 (age ~40 Myr). In all three runs, we observe ~100 cluster members, allowing us for the fir st time to put limits on the evolution of spots and magnetic activity in fully convective objects on timescales of a few years. For 20 objects covering masses from 0.05 to 0.5 Msol we detect a periodic flux modulation, indicating the presence of magnetic spots co-rotating with the objects. The detection rate of photometric periods (~20%) is significantly lower than in solar-mass stars at the same age, which points to a mass dependence in the spot properties. With two exceptions, none of the objects exhibit variability and thus spot activity in more than one season. This is contrary to what is seen in solar-mass stars and indicates that spot configurations capable of producing photometric modulations occur relatively rarely and are transient in VLM objects. The rotation periods derived in this paper range from 3 to 30h, arguing for a lack of slow rotators among VLM objects. The periods fit into a rotational evolution scenario with pre-main sequence contraction and moderate (40-50%) angular momentum losses due to wind braking. By combining our findings with literature results, we identify two regimes of rotational and magnetic properties, called C- and I-sequence. Main properties on the C-sequence are fast rotation, weak wind braking, Halpha emission, and saturated activity levels, while the I-sequence is characterised by slow rotation, strong wind braking, no Halpha emission, and linear activity-rotation relationship. Rotation rate and stellar mass are the primary parameters that determine in which regime an object is found. (abridged)
We present the first detection of photometric variability of a spectroscopically-confirmed Y dwarf. The Infrared Array Camera on board the Spitzer Space Telescope was used to obtain times series photometry at 3.6 and 4.5 microns over a twenty four ho ur period at two different epochs separated by 149 days. Variability is evident at 4.5 um in the first epoch and at 3.6 and 4.5 um in the second epoch which suggests that the underlying cause or causes of this variability change on the timescales of months. The second-epoch [3.6] and [4.5] light curves are nearly sinusoidal in form, in phase, have periods of roughly 8.5 hours, and have semi-amplitudes of 3.5%. We find that a simple geometric spot model with a single bright spot reproduces these observations well. We also compare our measured semi-amplitudes of the second epoch light curves to predictions of the static, one-dimensional, partly cloudy and hot spot models of Morley and collaborators and find that neither set of models can reproduce the observed [3.6] and[4.5] semi-amplitudes simultaneously. More advanced two- or three-dimensional models that include time-dependent phenomena like vertical mixing, cloud formation, and thermal relaxation are therefore sorely needed in order to properly interpret our observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا