ﻻ يوجد ملخص باللغة العربية
Automated emotion detection in speech is a challenging task due to the complex interdependence between words and the manner in which they are spoken. It is made more difficult by the available datasets; their small size and incompatible labeling idiosyncrasies make it hard to build generalizable emotion detection systems. To address these two challenges, we present a multi-modal approach that first transfers learning from related tasks in speech and text to produce robust neural embeddings and then uses these embeddings to train a pLDA classifier that is able to adapt to previously unseen emotions and domains. We begin by training a multilayer TDNN on the task of speaker identification with the VoxCeleb corpora and then fine-tune it on the task of emotion identification with the Crema-D corpus. Using this network, we extract speech embeddings for Crema-D from each of its layers, generate and concatenate text embeddings for the accompanying transcripts using a fine-tuned BERT model and then train an LDA - pLDA classifier on the resulting dense representations. We exhaustively evaluate the predictive power of every component: the TDNN alone, speech embeddings from each of its layers alone, text embeddings alone and every combination thereof. Our best variant, trained on only VoxCeleb and Crema-D and evaluated on IEMOCAP, achieves an EER of 38.05%. Including a portion of IEMOCAP during training produces a 5-fold averaged EER of 25.72% (For comparison, 44.71% of the gold-label annotations include at least one annotator who disagrees).
Emotion represents an essential aspect of human speech that is manifested in speech prosody. Speech, visual, and textual cues are complementary in human communication. In this paper, we study a hybrid fusion method, referred to as multi-modal attenti
General embeddings like word2vec, GloVe and ELMo have shown a lot of success in natural language tasks. The embeddings are typically extracted from models that are built on general tasks such as skip-gram models and natural language generation. In th
Self-supervised learning has attracted plenty of recent research interest. However, most works for self-supervision in speech are typically unimodal and there has been limited work that studies the interaction between audio and visual modalities for
The research on human emotion under multimedia stimulation based on physiological signals is an emerging field, and important progress has been achieved for emotion recognition based on multi-modal signals. However, it is challenging to make full use
Tacotron-based end-to-end speech synthesis has shown remarkable voice quality. However, the rendering of prosody in the synthesized speech remains to be improved, especially for long sentences, where prosodic phrasing errors can occur frequently. In