ترغب بنشر مسار تعليمي؟ اضغط هنا

NNLO HTLpt predictions for the curvature of the QCD phase transition line

108   0   0.0 ( 0 )
 نشر من قبل Michael Strickland
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present predictions for the second- and fourth-order curvature coefficients of the QCD phase transition line using the NNLO HTLpt-resummed thermodynamic potential. We present three cases corresponding to (i) $mu_s = mu_l = mu_B/3$, (ii) $mu_s=0$, $mu_l = mu_B/3,$ and (iii) $S = 0$, $Q/B = 0.4$, $mu_l = mu_B/3$. In all three cases, we find excellent agreement with continuum extrapolated lattice QCD results for $kappa_2$, given current statistical uncertainties. We also make HTLpt predictions for $kappa_4$ in all three cases, finding again excellent agreement with lattice extractions of this coefficient where available.

قيم البحث

اقرأ أيضاً

The curvature which characterizes the QCD phase transition at finite temperature and small values of the chemical potential is accessible to lattice simulations. The results for this quantity which have been obtained by several different lattice simu lation methods differ due to different numbers of flavors, different pion masses and different sizes of the simulation volume. In order to reconcile these results, it is important to investigate finite-volume effects on the curvature. We investigate the curvature of the chiral phase transition line at finite temperature and chemical potential in a finite volume. We use a phenomenological model for chiral symmetry breaking and apply non-perturbative functional renormalization group methods which account for critical long-range fluctuations at the phase transition. We find an intermediate volume region in which the curvature of the phase transition line is actually reduced relative to its infinite-volume value, provided periodic spatial boundary conditions are chosen for the quark fields. Size and location of this region depend on the value of the pion mass. Such an effect could account for differences in the curvature between lattice simulations in differently sized volumes and from functional methods in the infinite volume limit. We discuss implications of our results for the QCD phase diagram.
We construct the effective potential for a QCD-like theory using the auxiliary field method. The chiral phase transition exhibited by the model at finite temperature and the quark chemical potential is studied from the viewpoint of the shape change o f the potential near the critical point. We further generalize the effective potential so as to have quark number and scalar quark densities as independent variables near the tri-critical point.
The QCD phase diagram might exhibit a first order phase transition for large baryochemical potentials. We explore the cosmological implications of such a QCD phase transition in the early universe. We propose that the large baryon-asymmetry is dilute d by a little inflation where the universe is trapped in a false vacuum state of QCD. The little inflation is stopped by bubble nucleation which leads to primordial production of the seeds of extragalactic magnetic fields, primordial black holes and gravitational waves. In addition the power spectrum of cold dark matter can be affected up to mass scales of a billion solar masses. The imprints of the cosmological QCD phase transition on the gravitational wave background can be explored with the future gravitational wave detectors LISA and BBO and with pulsar timing.
Since the incident nuclei in heavy-ion collisions do not carry strangeness, the global net strangeness of the detected hadrons has to vanish. We show that there is an intimate relation between strangeness neutrality and baryon-strangeness correlation s. In the context of heavy-ion collisions, the former is a consequence of quark number conservation of the strong interactions while the latter are sensitive probes of the character of QCD matter. We investigate the sensitivity of baryon-strangeness correlations on the freeze-out conditions of heavy-ion collisions by studying their dependence on temperature, baryon- and strangeness chemical potential. The impact of strangeness neutrality on the QCD equation of state at finite chemical potentials will also be discussed. We model the low-energy sector of QCD by an effective Polyakov loop enhanced quark-meson model with 2+1 dynamical quark flavors and use the functional renormalization group to account for the non-perturbative quantum fluctuations of hadrons.
In this proceedings we present a state-of-the-art method of calculating thermodynamic potential at finite temperature and finite chemical potential, using Hard Thermal Loop perturbation theory (HTLpt) up to next-to-next-leading-order (NNLO). The resu lting thermodynamic potential enables us to evaluate different thermodynamic quantities including pressure and various quark number susceptibilities (QNS). Comparison between our analytic results for those thermodynamic quantities with the available lattice data shows a good agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا