ﻻ يوجد ملخص باللغة العربية
We study quantum aspects of the target space of the non-linear sigma model which is a low-energy effective theory of the gauged linear sigma model (GLSM). As such, we especially compute the exact sphere partition function of GLSM for KK$5$-branes whose background geometry is a Taub-NUT space, using the supersymmetric localization technique on the Coulomb branch. From the sphere partition function, we distill the world-sheet instanton effects. In particular, we show that concerning the single-centered Taub-NUT space, the instanton contributions exist only if the asymptotic radius of the $S^1$ fiber in the Taub-NUT space is zero.
We describe supersymmetric A-branes and B-branes in open N=(2,2) dynamically gauged nonlinear sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds, these equivariant branes have a mirror description
We construct a cohomological field theory for a gauged linear sigma model space in geometric phase, using the method of gauge theory and differential geometry. The cohomological field theory is expected to match the Gromov-Witten theory of the classi
In this paper, we construct the first analytic examples of (3+1)-dimensional self-gravitating regular cosmic tube solutions which are superconducting, free of curvature singularities and with non-trivial topological charge in the Einstein-SU(2) non-l
States on the Coulomb branch of N=4 super-Yang-Mills theory are studied from the point of view of gauged supergravity in five dimensions. These supersymmetric solutions provide examples of consistent truncation from type IIB supergravity in ten dimen
In this paper, we investigate tree-level scattering amplitude relations in $U(N)$ non-linear sigma model. We use Cayley parametrization. As was shown in the recent works [23,24] both on-shell amplitudes and off-shell currents with odd points have to