ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Black Hole Merger Families

125   0   0.0 ( 0 )
 نشر من قبل Do\\u{g}a Veske
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin, environment, and evolution of stellar-mass black hole binaries are still a mystery. One of the proposed binary formation mechanisms is manifest in dynamical interactions between multiple black holes. A resulting framework of these dynamical interactions is the so-called hierarchical triple merger scenario, which happens when three black holes become gravitationally bound, causing two successive black hole mergers to occur. In such successive mergers, the black holes involved are directly related to each other, and hence this channel can be directly tested from the properties of the detected binary black hole mergers. Here we present a search for hierarchical triple mergers among events within the GWTC-1 and GWTC-2 catalogs of LIGO/Virgo, the eccentric localization of GW190521 and those found by the IAS-Princeton group. The search includes improved statistical quantification that also accounts for black hole spins. We perform our analysis for different upper bounds on the mass distribution of first generation BHs. Our results demonstrate the importance of the mass distributions properties for constraining the hierarchical merger scenario. We present the individually significant merger pairs. The search yields interesting candidate families and hints of its future impact.



قيم البحث

اقرأ أيضاً

103 - James M. Lattimer 2019
The LIGO/Virgo Consortium (LVC) released a preliminary announcement of a candidate gravitational wave signal, S190426c, that could have arisen from a black hole-neutron star merger. As the first such candidate system, its properties such as masses an d spin are of great interest. Although LVC policy prohibits disclosure of these properties in preliminary announcements, LVC does release the estimated probabilities that this system is in specific categories, such as binary neutron star, binary black hole and black hole-neutron star. LVC also releases information concerning relative signal strength, distance, and the probability that ejected mass or a remnant disc survived the merger. In the case of events with a finite probability of being in more than one category, such as is likely to occur with a black hole-neutron star merger, it is shown how to estimate the masses of the components and the spin of the black hole. This technique is applied to the source S190426c.
We explore the possibility that GW190412, a binary black hole merger with a non-equal-mass ratio and significantly spinning primary, was formed through repeated black hole mergers in a dense super star cluster. Using a combination of semi-analytic pr escriptions for the remnant spin and recoil kick of black hole mergers, we show that the mass ratio and spin of GW190412 are consistent with a binary black hole whose primary component has undergone two successive mergers from a population of $sim 10M_{odot}$ black holes in a high-metallicity environment. We then explore the production of GW190412-like analogs in the CMC Cluster Catalog, a grid of 148 $N$-body star cluster models, as well as a new model, behemoth, with nearly $10^7$ particles and initial conditions taken from a cosmological MHD simulation of galaxy formation. We show that the production of binaries with GW190412-like masses and spins is dominated by massive super star clusters with high metallicities and large central escape speeds. While many are observed in the local universe, our results suggest that a careful treatment of these massive clusters, many of which may have been disrupted before the present day, is necessary to characterize the production of unique gravitational-wave events produced through dynamics.
The gravitational-wave signal GW190521 is consistent with a binary black hole merger source at redshift 0.8 with unusually high component masses, $85^{+21}_{-14},M_{odot}$ and $66^{+17}_{-18},M_{odot}$, compared to previously reported events, and sho ws mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range $65 - 120,M_{odot}$. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger $(142^{+28}_{-16},M_{odot})$ classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular binary black hole coalescence, we detail the physical properties of GW190521s source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be $0.13^{+0.30}_{-0.11},{rm Gpc}^{-3},rm{yr}^{-1}$. We discuss the astrophysical implications of GW190521 for stellar collapse, and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescence, or via hierarchical merger of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.
The LIGO/Virgo collaboration has reported the detection of GW190412, a BH-BH merger with the most unequal masses to date: 24.4-34.7 Msun and 7.4-10.1 Msun (a mass ratio of q=0.21-0.41). Additionally, GW190412s effective spin was estimated to be Xeff= 0.14-0.34, with the spin of the primary BH in the range a=0.17-0.59. Based on this and prior detections, about 10 percent of BH-BH mergers have q<0.4. Major BH-BH formation channels tend to produce BH-BH mergers with comparable masses (typically with q>0.5). Here we test whether the classical isolated binary evolution channel can produce mergers resembling GW190412. We show that our standard binary evolution scenario, with the typical assumptions on input physics we have used in the past, produces such mergers (masses and spins). For this particular model of the input physics the overall BH-BH merger rate density in the local Universe (z=0) is: 73.5 Gpc^-3 yr^-1, while for systems with q<0.41 the rate density is: 6.8 Gpc^-3 yr^-1. As GW190412 shows some weak evidence for misaligned spins, we provide distribution of precession parameter in our models and conclude that if among the new LIGO/Virgo detections the evidence of system precession is strong and more than 10 percent of BH-BH mergers have large in-plane spin components (Xp>0.5) then common envelope isolated binary BH-BH formation channel can be excluded as their origin.
As a powerful source of gravitational waves (GW), a supermassive black hole (SMBH) merger may be accompanied by a relativistic jet that leads to detectable electromagnetic (EM) emission. We model the propagation of post-merger jets inside a pre-merge r circumnuclear environment formed by disk winds, and calculate multi-wavelength EM spectra from the forward shock region. We show that the non-thermal EM signals from SMBH mergers are detectable up to the detection horizon of future GW facilities such as the Laser Interferometer Space Antenna (LISA). Calculations based on our model predict slowly fading transients with time delays from days to months after the coalescence, leading to implications for EM follow-up observations after the GW detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا