ﻻ يوجد ملخص باللغة العربية
Topological superconductors represent one of the key hosts of Majorana-based topological quantum computing. Typical scenarios for one-dimensional topological superconductivity assume a broken gauge symmetry associated to a superconducting state. However, no interacting one-dimensional many-body system is known to spontaneously break gauge symmetries. Here, we show that zero modes emerge in a many-body system without gauge symmetry breaking and in the absence of superconducting order. In particular, we demonstrate that Majorana zero modes of the symmetry-broken superconducting state are continuously connected to these zero-mode excitations, demonstrating that zero-bias anomalies may emerge in the absence of gauge symmetry breaking. We demonstrate that these many-body zero modes share the robustness features of the Majorana zero modes of symmetry-broken topological superconductors. We introduce a bosonization formalism to analyze these excitations and show that a ground state analogous to a topological superconducting state can be analytically found in a certain limit. Our results demonstrate that robust Majorana-like zero modes may appear in a many-body systems without gauge symmetry breaking, thus introducing a family of protected excitations with no single-particle analogs.
It has been widely believed that half quantum vortices are indispensable to realize topological stable Majorana zero modes and non-Abelian anyons in spinful superconductors/superfluids. Contrary to this wisdom, we here demonstrate that integer quantu
We study the entanglement of purification (EoP), a measure of total correlation between two subsystems $A$ and $B$, for free scalar field theory on a lattice and the transverse-field Ising model by numerical methods. In both of these models, we find
We present a framework in which the transition between a many-body localised (MBL) phase and an ergodic one is symmetry breaking. We consider random Floquet spin chains, expressing their averaged spectral form factor (SFF) as a function of time in te
We show that topological phases should be realizable in readily available and well studied heterostructures. In particular we identify a new class of topological materials which are well known in spintronics: helical ferromagnet-superconducting junct
We propose an alternative route to engineer Majorana zero modes (MZMs), which relies on inducing shift or spin vortex defects in magnetic textures which microscopically coexist or are in proximity to a superconductor. The present idea applies to a va