ترغب بنشر مسار تعليمي؟ اضغط هنا

StrObe: Streaming Object Detection from LiDAR Packets

107   0   0.0 ( 0 )
 نشر من قبل Davi Frossard
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many modern robotics systems employ LiDAR as their main sensing modality due to its geometrical richness. Rolling shutter LiDARs are particularly common, in which an array of lasers scans the scene from a rotating base. Points are emitted as a stream of packets, each covering a sector of the 360{deg} coverage. Modern perception algorithms wait for the full sweep to be built before processing the data, which introduces an additional latency. For typical 10Hz LiDARs this will be 100ms. As a consequence, by the time an output is produced, it no longer accurately reflects the state of the world. This poses a challenge, as robotics applications require minimal reaction times, such that maneuvers can be quickly planned in the event of a safety-critical situation. In this paper we propose StrObe, a novel approach that minimizes latency by ingesting LiDAR packets and emitting a stream of detections without waiting for the full sweep to be built. StrObe reuses computations from previous packets and iteratively updates a latent spatial representation of the scene, which acts as a memory, as new evidence comes in, resulting in accurate low-latency perception. We demonstrate the effectiveness of our approach on a large scale real-world dataset, showing that StrObe far outperforms the state-of-the-art when latency is taken into account, and matches the performance in the traditional setting.



قيم البحث

اقرأ أيضاً

When localizing and detecting 3D objects for autonomous driving scenes, obtaining information from multiple sensor (e.g. camera, LIDAR) typically increases the robustness of 3D detectors. However, the efficient and effective fusion of different featu res captured from LIDAR and camera is still challenging, especially due to the sparsity and irregularity of point cloud distributions. This notwithstanding, point clouds offer useful complementary information. In this paper, we would like to leverage the advantages of LIDAR and camera sensors by proposing a deep neural network architecture for the fusion and the efficient detection of 3D objects by identifying their corresponding 3D bounding boxes with orientation. In order to achieve this task, instead of densely combining the point-wise feature of the point cloud and the related pixel features, we propose a novel fusion algorithm by projecting a set of 3D Region of Interests (RoIs) from the point clouds to the 2D RoIs of the corresponding the images. Finally, we demonstrate that our deep fusion approach achieves state-of-the-art performance on the KITTI 3D object detection challenging benchmark.
177 - Jianhao Jiao , Peng Yun , Lei Tai 2020
Extrinsic perturbation always exists in multiple sensors. In this paper, we focus on the extrinsic uncertainty in multi-LiDAR systems for 3D object detection. We first analyze the influence of extrinsic perturbation on geometric tasks with two basic examples. To minimize the detrimental effect of extrinsic perturbation, we propagate an uncertainty prior on each point of input point clouds, and use this information to boost an approach for 3D geometric tasks. Then we extend our findings to propose a multi-LiDAR 3D object detector called MLOD. MLOD is a two-stage network where the multi-LiDAR information is fused through various schemes in stage one, and the extrinsic perturbation is handled in stage two. We conduct extensive experiments on a real-world dataset, and demonstrate both the accuracy and robustness improvement of MLOD. The code, data and supplementary materials are available at: https://ram-lab.com/file/site/mlod
193 - Libo Sun , Haokui Zhang , Wei Yin 2021
Road detection is a critically important task for self-driving cars. By employing LiDAR data, recent works have significantly improved the accuracy of road detection. Relying on LiDAR sensors limits the wide application of those methods when only cam eras are available. In this paper, we propose a novel road detection approach with RGB being the only input during inference. Specifically, we exploit pseudo-LiDAR using depth estimation, and propose a feature fusion network where RGB and learned depth information are fused for improved road detection. To further optimize the network structure and improve the efficiency of the network. we search for the network structure of the feature fusion module using NAS techniques. Finally, be aware of that generating pseudo-LiDAR from RGB via depth estimation introduces extra computational costs and relies on depth estimation networks, we design a modality distillation strategy and leverage it to further free our network from these extra computational cost and dependencies during inference. The proposed method achieves state-of-the-art performance on two challenging benchmarks, KITTI and R2D.
It is laborious to manually label point cloud data for training high-quality 3D object detectors. This work proposes a weakly supervised approach for 3D object detection, only requiring a small set of weakly annotated scenes, associated with a few pr ecisely labeled object instances. This is achieved by a two-stage architecture design. Stage-1 learns to generate cylindrical object proposals under weak supervision, i.e., only the horizontal centers of objects are click-annotated on birds view scenes. Stage-2 learns to refine the cylindrical proposals to get cuboids and confidence scores, using a few well-labeled object instances. Using only 500 weakly annotated scenes and 534 precisely labeled vehicle instances, our method achieves 85-95% the performance of current top-leading, fully supervised detectors (which require 3, 712 exhaustively and precisely annotated scenes with 15, 654 instances). More importantly, with our elaborately designed network architecture, our trained model can be applied as a 3D object annotator, allowing both automatic and active working modes. The annotations generated by our model can be used to train 3D object detectors with over 94% of their original performance (under manually labeled data). Our experiments also show our models potential in boosting performance given more training data. Above designs make our approach highly practical and introduce new opportunities for learning 3D object detection with reduced annotation burden.
Video object detection (VID) has been vigorously studied for years but almost all literature adopts a static accuracy-based evaluation, i.e., average precision (AP). From a robotic perspective, the importance of recall continuity and localization sta bility is equal to that of accuracy, but the AP is insufficient to reflect detectors performance across time. In this paper, non-reference assessments are proposed for continuity and stability based on object tracklets. These temporal evaluations can serve as supplements to static AP. Further, we develop an online tracklet refinement for improving detectors temporal performance through short tracklet suppression, fragment filling, and temporal location fusion. In addition, we propose a small-overlap suppression to extend VID methods to single object tracking (SOT) task so that a flexible SOT-by-detection framework is then formed. Extensive experiments are conducted on ImageNet VID dataset and real-world robotic tasks, where the superiority of our proposed approaches are validated and verified. Codes will be publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا