ترغب بنشر مسار تعليمي؟ اضغط هنا

Low Energy Constraints From Absolute Neutrino Mass Observables and Lepton Flavor Violation in Left-Right Symmetric Model

83   0   0.0 ( 0 )
 نشر من قبل Vishnudath K. N.
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the correlations among the three absolute neutrino mass observables - the effective Majorana mass ($m_{ee}$) which can be obtained from neutrinoless double beta decay, the electron neutrino mass ($m_{beta}$) which is measured in single beta decay experiments and the sum of the light neutrino masses ($Sigma$) which is constrained from cosmological observations, in the context of minimal left-right symmetric model. Two phenomenologically interesting cases of type-I seesaw dominance as well as type-II seesaw dominance have been considered. We have taken into account the independent constraints coming from lepton flavor violation, single $beta$ decay, cosmology and neutrinoless double beta decay and have determined the combined allowed parameter space that can be probed in the future experiments. We have also analyzed the correlations and tensions between the different mass variables. In addition, the constraints on the masses of the heavy particles coming from lepton flavor violation and the bounds on three absolute neutrino mass observables are also determined. We show that these constraints can rule out some of the parameter space which are not probed by the collider experiments.



قيم البحث

اقرأ أيضاً

We did a model independent phenomenological study of baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) and charged lepton flavour violation (CLFV) in a generic left-right symmetric model (LRSM) where neutrino mass originates from t he type I + type II seesaw mechanism. We studied the new physics contributions to NDBD coming from the left-right gauge boson mixing and the heavy neutrino contribution within the framework of LRSM. We have considered the mass of the RH gauge boson to be specifically 5 TeV, 10 TeV and 18 TeV and studied the effects of the new physics contributions on the effective mass and baryogenesis and compared with the current experimental limit. We tried to correlate the cosmological BAU from resonant leptogenesis with the low energy observables, notably, NDBD and LFV with a view to finding a common parameter space where they coexists.
We perform a thermal unflavored leptogenesis analysis on minimal left-right symmetric models with discrete left-right symmetry identified as generalized parity or charge conjugation. When left-right symmetry is unbroken in the lepton Yukawa sector, t he neutrino Dirac coupling matrix is completely determined by neutrino masses and mixing angles, allowing CP violation needed to generate leptogenesis totally resides in the low-energy sector. With two lepton asymmetry generation ways, both type I and mixed type I$+$II neutrino mass generation mechanisms are considered. After solving the Boltzmann equations numerically, we find that the low-energy CP phases in the lepton mixing matrix can successfully produce the observed baryon asymmetry, and in some cases, the Dirac CP phase can be the only source of CP violation. Finally, we discuss the interplay among low-energy CP phase measurements, leptogenesis, and neutrinoless double beta decay. We show that the viable models for successful leptogenesis can be probed in next-generation neutrinoless double-beta decay experiments.
In this work, we studied baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) in the framework of LRSM where type I and type II seesaw terms arises naturally. The type I seesaw mass term is considered to be favouring $mu-tau$ symmetry , taking into account the widely studied realizations of $mu-tau$ symmetric neutrino mass models, viz. Tribimaximal Mixing (TBM), Hexagonal Mixing (HM) and Golden Ratio Mixing (GRM) respectively. The required correction to generate a non vanishing reactor mixing angle $theta_{13}$ is obtained from the perturbation matrix, type II seesaw mass term in our case. We studied the new physics contributions to NDBD and baryogenesis ignoring the left-right gauge boson mixing and the heavy-light neutrino mixing, keeping mass of the gauge bosons and scalars to be around TeV and studied the effects of the new physics contributions on the effective mass, NDBD half life and cosmological BAU and compared with the values imposed by experiments. We basically tried to find the leading order contributions to NDBD and BAU, coming from type I or type II seesaw in our work.
Inspired by the recent diboson excess observed at the LHC and possible interpretation within a TeV-scale Left-Right symmetric framework, we explore its implications for low-energy experiments searching for lepton number and flavor violation. Assuming a simple Type-II seesaw mechanism for neutrino masses, we show that for the right-handed (RH) gauge boson mass and coupling values required to explain the LHC anomalies, the RH contribution to the lepton number violating process of neutrinoless double beta decay ($0 ubetabeta$) is already constrained by current experiments for relatively low-mass (MeV-GeV) RH neutrinos. The future ton-scale $0 ubetabeta$ experiments could probe most of the remaining parameter space, irrespective of the neutrino mass hierarchy and uncertainties in the oscillation parameters and nuclear matrix elements. On the other hand, the RH contribution to the lepton flavor violating process of $muto egamma$ is constrained for relatively heavier (TeV) RH neutrinos, thus providing a complementary probe of the model. Finally, a measurement of the absolute light neutrino mass scale from future precision cosmology could make this scenario completely testable.
186 - M.J.Luo , Q.Y.Liu 2008
The Type I, II and hybrid (I+II) seesaw mechanism, which explain why neutrinos are especially light, are consequences of the left-right symmetric model (LRSM). They can be classified by the ranges of parameters of LRSM. We show that a nearly cancella tion in general Type-(I+II) seesaw is more natural than other types of seesaw in the LRSM if we consider their stability against radiative correction. In this scenario the small neutrino masses are due to the structure cancellation, and the masses of the right handed neutrino can be of order of O(10)TeV. The realistic model for non-zero neutrino masses, charged lepton masses and lepton tribimaximal mixing can be implemented by embedding $A_4$ flavor symmetry in the model with perturbations to the textures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا