ﻻ يوجد ملخص باللغة العربية
This paper proposes a new robust smooth-threshold estimating equation to select important variables and automatically estimate parameters for high dimensional longitudinal data. A novel working correlation matrix is proposed to capture correlations within the same subject. The proposed procedure works well when the number of covariates p increases as the number of subjects n increases. The proposed estimates are competitive with the estimates obtained with the true correlation structure, especially when the data are contaminated. Moreover, the proposed method is robust against outliers in the response variables and/or covariates. Furthermore, the oracle properties for robust smooth-threshold estimating equations under large n, diverging p are established under some regularity conditions. Extensive simulation studies and a yeast cell cycle data are used to evaluate the performance of the proposed method, and results show that our proposed method is competitive with existing robust variable selection procedures.
When fitting statistical models, some predictors are often found to be correlated with each other, and functioning together. Many group variable selection methods are developed to select the groups of predictors that are closely related to the contin
High-dimensional, low sample-size (HDLSS) data problems have been a topic of immense importance for the last couple of decades. There is a vast literature that proposed a wide variety of approaches to deal with this situation, among which variable se
Yang et al. (2016) proved that the symmetric random walk Metropolis--Hastings algorithm for Bayesian variable selection is rapidly mixing under mild high-dimensional assumptions. We propose a novel MCMC sampler using an informed proposal scheme, whic
As an effective nonparametric method, empirical likelihood (EL) is appealing in combining estimating equations flexibly and adaptively for incorporating data information. To select important variables and estimating equations in the sparse high-dimen
We develop a Bayesian variable selection method, called SVEN, based on a hierarchical Gaussian linear model with priors placed on the regression coefficients as well as on the model space. Sparsity is achieved by using degenerate spike priors on inac