ترغب بنشر مسار تعليمي؟ اضغط هنا

The influence of infall on the properties of protoplanetary discs

75   0   0.0 ( 0 )
 نشر من قبل Oliver Schib
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. Schib




اسأل ChatGPT حول البحث

We perform a population synthesis of protoplanetary discs including infall with a total of $50,000$ simulations using a 1D vertically integrated viscous evolution code, studying a large parameter space in final stellar mass. Initial conditions and infall locations are chosen based on the results from a radiation-hydrodynamic population synthesis of circumstellar discs. We also consider a different infall prescription based on a magnetohydrodynamic (MHD) collapse simulation in order to assess the influence of magnetic fields on disc formation. The duration of the infall phase is chosen to produce a stellar mass distribution in agreement with the observationally determined stellar initial mass function. We find that protoplanetary discs are very massive early in their lives. When averaged over the entire stellar population, the discs have masses of $sim 0.3$ and $0.1,mathrm{M_odot}$ for systems based on hydrodynamic or MHD initial conditions, respectively. In systems with final stellar mass $sim 1,mathrm{M_odot}$, we find disc masses of $sim 0.7,mathrm{M_odot}$ for the `hydro case and $sim 0.2,mathrm{M_odot}$ for the `MHD case at the end of the infall phase. Furthermore, the inferred total disc lifetimes are long, $approx 5-7,mathrm{Myr}$ on average, despite our choice of a high value of $10^{-2}$ for the background viscosity $alpha$-parameter. In addition, fragmentation is common in systems that are simulated using hydrodynamic cloud collapse, with more fragments of larger mass formed in more massive systems. In contrast, if disc formation is limited by magnetic fields, fragmentation is suppressed entirely.

قيم البحث

اقرأ أيضاً

It is widely known that giant planets have the capacity to open deep gaps in their natal gaseous protoplanetary discs. It is unclear, however, how gas accretion onto growing planets influences the shape and depth of their growing gaps. We performed i sothermal hydrodynamical simulations with the Fargo-2D1D code, which assumes planets accreting gas within full discs that range from 0.1 to 260 AU. The gas accretion routine uses a sink cell approach, in which different accretion rates are used to cope with the broad range of gas accretion rates cited in the literature. We find that the planetary gas accretion rate increases for larger disc aspect ratios and greater viscosities. Our main results show that gas accretion has an important impact on the gap-opening mass: we find that when the disc responds slowly to a change in planetary mass (i.e., at low viscosity), the gap-opening mass scales with the planetary accretion rate, with a higher gas accretion rate resulting in a larger gap-opening mass. On the other hand, if the disc response time is short (i.e., at high viscosity), then gas accretion helps the planet carve a deep gap. As a consequence, higher planetary gas accretion rates result in smaller gap-opening masses. Our results have important implications for the derivation of planet masses from disc observations: depending on the planetary gas accretion rate, the derived masses from ALMA observations might be off by up to a factor of two. We discuss the consequences of the change in the gap-opening mass on the evolution of planetary systems based on the example of the grand tack scenario. Planetary gas accretion also impacts stellar gas accretion, where the influence is minimal due to the presence of a gas-accreting planet.
Many theoretical studies have shown that external photoevaporation from massive stars can severely truncate, or destroy altogether, the gaseous protoplanetary discs around young stars. In tandem, several observational studies report a correlation bet ween the mass of a protoplanetary disc and its distance to massive ionising stars in star-forming regions, and cite external photoevaporation by the massive stars as the origin of this correlation. We present N-body simulations of the dynamical evolution of star-forming regions and determine the mass-loss in protoplanetary discs from external photoevaporation due to far ultraviolet (FUV) and extreme ultraviolet (EUV) radiation from massive stars. We find that projection effects can be significant, in that low-mass disc-hosting stars that appear close to the ionising sources may be fore- or background stars in the star-forming region. We find very little evidence in our simulations for a trend in increasing disc mass with increasing distance from the massive star(s), even when projection effects are ignored. Furthermore, the dynamical evolution of these young star-forming regions moves stars whose discs have been photoevaporated to far-flung locations, away from the ionising stars, and we suggest that any correlation between disc mass and distance the ionising star is either coincidental, or due to some process other than external photoevaporation.
Spatially resolving the immediate surroundings of young stars is a key challenge for the planet formation community. SPHERE on the VLT represents an important step forward by increasing the opportunities offered by optical or near-infrared imaging in struments to image protoplanetary discs. The Guaranteed Time Observation Disc team has concentrated much of its efforts on polarimetric differential imaging, a technique that enables the efficient removal of stellar light and thus facilitates the detection of light scattered by the disc within a few au from the central star. These images reveal intriguing complex disc structures and diverse morphological features that are possibly caused by ongoing planet formation in the disc. An overview of the recent advances enabled by SPHERE is presented.
In previous laboratory experiments, we measured the temperature dependence of sticking forces between micrometer grains of chondritic composition. The data showed a decrease in surface energy by a factor ~5 with increasing temperature. Here, we focus on the effect of surface water on grains. Under ambient conditions in the laboratory, multiple water layers are present. At the low pressure of protoplanetary discs and for moderate temperatures, grains likely only hold a monolayer. As dust drifts inwards, even this monolayer eventually evaporates completely in higher temperature regions. To account for this, we measured the tensile strength for the same chondritic material as was prepared and measured under normal laboratory conditions in our previous work, but now introducing two new preparation methods: drying dust cylinders in air (dry samples), and heating dust pressed into cylinders in vacuum (super-dry samples). For all temperatures up to 1000 K, the data of the dry samples are consistent with a simple increase in the sticking force by a factor of ~10 over wet samples. Up to 900 K super-dry samples behave like dry samples. However, the sticking forces then exponentially increase up to another factor ~100 at about 1200 K. The increase in sticking from wet to dry extends a trend that is known for amorphous silicates to multimineral mixtures. The findings for super-dry dust imply that aggregate growth is boosted in a small spatial high-temperature region around 1200 K, which might be a sweet spot for planetesimal formation.
Young solar-type stars are known to be strong X-ray emitters and their X-ray spectra have been widely studied. X-rays from the central star may play a crucial role in the thermodynamics and chemistry of the circumstellar material as well as in the at mospheric evolution of young planets. In this paper we present model spectra based on spectral parameters derived from the observations of young stars in the Orion Nebula Cluster from the Chandra Orion Ultradeep Project (COUP). The spectra are then used to calculate new photoevaporation prescriptions that can be used in disc and planet population synthesis models. Our models clearly show that disc wind mass loss rates are controlled by the stellar luminosity in the soft (100 eV - 1 keV) X- ray band. New analytical relations are provided for the mass loss rates and profiles of photoevaporative winds as a function of the luminosity in the soft X-ray band. The agreement between observed and predicted transition disc statistics moderately improved using the new spectra, but the observed population of strongly accreting large cavity discs can still not be reproduced by these models. Furthermore, our models predict a population of non-accreting transition discs that are not observed. This highlights the importance of considering the depletion of millimeter-sized dust grains from the outer disc, which is a likely reason why such discs have not been detected yet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا