ترغب بنشر مسار تعليمي؟ اضغط هنا

Embedding theorems for discrete dynamical systems and topological flows

133   0   0.0 ( 0 )
 نشر من قبل Ruxi Shi
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Ruxi Shi




اسأل ChatGPT حول البحث

In this paper, we investigate the embeddings for topological flows. We prove an embedding theorem for discrete topological system. Our results apply to suspension flows via constant function, and for this case we show an embedding theorem for suspension flows and give a new proof of Gutman-Jin embedding theorem.



قيم البحث

اقرأ أيضاً

We study two coupled discrete-time equations with different (asynchronous) periodic time scales. The coupling is of the type sample and hold, i.e., the state of each equation is sampled at its update times and held until it is read as an input at the next update time for the other equation. We construct an interpolating two-dimensional complex-valued system on the union of the two time scales and an extrapolating four-dimensional system on the intersection of the two time scales. We discuss stability by several results, examples and counterexamples in various frameworks to show that the asynchronicity can have a significant impact on the dynamical properties.
Evolutionary games on graphs play an important role in the study of evolution of cooperation in applied biology. Using rigorous mathematical concepts from a dynamical systems and graph theoretical point of view, we formalize the notions of attractor, update rules and update orders. We prove results on attractors for different utility functions and update orders. For complete graphs we characterize attractors for synchronous and sequential update rules. In other cases (for $k$-regular graphs or for different update orders) we provide sufficient conditions for attractivity of full cooperation and full defection. We construct examples to show that these conditions are not necessary. Finally, by formulating a list of open questions we emphasize the advantages of our rigorous approach.
We introduce a family of discrete dynamical systems which includes, and generalizes, the mutation dynamics of rank two cluster algebras. These systems exhibit behavior associated with integrability, namely preservation of a symplectic form, and in th e tropical case, the existence of a conserved quantity. We show in certain cases that the orbits are unbounded. The tropical dynamics are related to matrix mutation, from the theory of cluster algebras. We are able to show that in certain special cases, the tropical map is periodic. We also explain how our dynamics imply the asymptotic sign-coherence observed by Gekhtman and Nakanishi in the $2$-dimensional situation.
Let $mathcal{M}(X)$ be the space of Borel probability measures on a compact metric space $X$ endowed with the weak$^ast$-topology. In this paper, we prove that if the topological entropy of a nonautonomous dynamical system $(X,{f_n}_{n=1}^{+infty})$ vanishes, then so does that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$; moreover, once the topological entropy of $(X,{f_n}_{n=1}^{+infty})$ is positive, that of its induced system $(mathcal{M}(X),{f_n}_{n=1}^{+infty})$ jumps to infinity. In contrast to Bowens inequality, we construct a nonautonomous dynamical system whose topological entropy is not preserved under a finite-to-one extension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا