ﻻ يوجد ملخص باللغة العربية
We study theoretically AB-stacked honeycomb bilayers driven by light in resonance with an infrared phonon within a tight-binding description. We characterize the phonon properties of honeycomb bilayers with group theory and construct an electronic time-dependent tight-binding model for the system following photo-excitation in resonance with an infrared phonon. We adopt an atomically adiabatic approximation, introduced by Mohantya and Heller PNAS 116, 18316 (2019) to describe classically vibrating nuclei, but obtain the Floquet quasienergy spectrum associated with the time-dependent model exactly. We introduce a general scheme to disentangle the complex low-frequency Floquet spectrum to elucidate the relevant Floquet bands. As a prototypical example, we consider bilayer graphene. We find that light in the low-frequency regime can induce a bandgap in the quasienergy spectrum in the vicinity of the K points even if it is linearly polarized, in contrast with the expectations within the Born-Oppenheimer approximation and the high-frequency regime. Finally, we analyze the diabaticity of the driven electron and driven phonon processes and found contrasting effects on the autocorrelation functions at the same driving frequency: driven phonons preserve the character of the initial state while driven electrons exhibit strong deviations within a few drive cycles. The procedure outlined here can be applied to other materials to describe the combined effects of low-frequency light on phonons and electrons.
We present a study on the lifting of degeneracy of the size-quantized energy levels in an electrostatically defined quantum point contact in bilayer graphene by the application of in-plane magnetic fields. We observe a Zeeman spin splitting of the fi
We measure the renormalized effective mass (m*) of interacting two-dimensional electrons confined to an AlAs quantum well while we control their distribution between two spin and two valley subbands. We observe a marked contrast between the spin and
By adding a large inductance in a dc-SQUID phase qubit loop, one decouples the junctions dynamics and creates a superconducting artificial atom with two internal degrees of freedom. In addition to the usual symmetric plasma mode ({it s}-mode) which g
In a topological quantum computer, braids of non-Abelian anyons in a (2+1)-dimensional space-time form quantum gates, whose fault tolerance relies on the topological, rather than geometric, properties of the braids. Here we propose to create and expl
Thanks to the recent discovery on the magic-angle bilayer graphene, twistronics is quickly becom11 ing a burgeoning field in condensed matter physics. This letter expands the realm of twistronics to acoustics by introducing twisted bilayer phononic g