ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA CO Observations of the Gamma-Ray Supernova Remnant RX J1713.7-3946: Discovery of Shocked Molecular Cloudlets and Filaments at 0.01 pc scales

104   0   0.0 ( 0 )
 نشر من قبل Hidetoshi Sano
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

RX J1713.7-3946 is a unique core-collapse SNR that emits bright TeV gamma-rays and synchrotron X-rays caused by cosmic rays, in addition to interactions with interstellar gas clouds. We report here on results of ALMA $^{12}$CO($J$ = 1-0) observations toward the northwestern shell of the SNR. We newly found three molecular complexes consisting of dozens of shocked molecular cloudlets and filaments with typical radii of $sim$0.03-0.05 pc and densities of $sim$$10^4$ cm$^{-3}$. These cloudlets and filaments are located not only along synchrotron X-ray filaments, but also in the vicinity of X-ray hotspots with month or year-scale time variations. We argue that X-ray hotspots were generated by shock-cloudlet interactions through magnetic-field amplification up to mG. The ISM density contrast of $sim$$10^5$, coexistence of molecular cloudlets and low-density diffuse medium of $sim$0.1 cm$^{-3}$, is consistent with such a magnetic field amplification as well as a wind-bubble scenario. The small-scale cloud structures also affect hadronic gamma-ray spectra considering the magnetic field amplification on surface and inside clouds.



قيم البحث

اقرأ أيضاً

141 - H. Sano , T. Fukuda , S. Yoshiike 2014
We have carried out a spectral analysis of the Suzaku X-ray data in the 0.4-12 keV range toward the shell-type very-high-energy {gamma}-ray supernova remnant RX J1713.7-3946. The aims of this analysis are to estimate detailed X-rays spectral properti es at a high angular resolution up to 2 arcmin, and to compare them with the interstellar gas. The X-ray spectrum is non-thermal and used to calculate absorbing column density, photon index, and absorption-corrected X-ray flux. The photon index varies significantly from 2.1 to 2.9. It is shown that the X-ray intensity is well correlated with the photon index, especially in the west region, with a correlation coefficient of 0.81. The X-ray intensity tends to increase with the averaged interstellar gas density while the dispersion is relatively large. The hardest spectra having the photon index less than 2.4 are found outside of the central 10 arcmin of the SNR, from the north to the southeast (~430 arcmin^2) and from the southwest to the northwest (~150 arcmin^2). The former region shows low interstellar gas density, while the latter high interstellar gas density. We present discussion for possible scenarios which explain the distribution of the photon index and its relationship with the interstellar gas.
We present observations of the young Supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0.55$^{circ} pm 0.04^{circ}$ matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allows us to identify the LAT source with the supernova remnant RX J1713.7-3946. The spectrum of the source can be described by a very hard power-law with a photon index of $Gamma = 1.5 pm 0.1$ that coincides in normalization with the steeper H.E.S.S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.
160 - Yunyong Tang , Siming Liu 2021
Supernova remnant RX J1713.7-3946 (also named as G347.3-0.5) has exhibited largest surface brightness, detailed spectral and shell-type morphology, it is one of the brightest TeV sources. The recent H.E.S.S. observation of RX J1713.7-3946 revealed te xtbf{a} broken power-law spectrum of GeV-TeV gamma-ray spectrum and more extended gamma-ray spatial radial profile than that in the X-ray band. Based on the diffusion shock acceleration model, we solve spherically symmetric hydrodynamic equations and transport equations of particles, and investigate multi-band non-thermal emission of RX J1713.7-3946 and radial profiles of its surface brightness for two selected zones in the leptonic scenario for the $gamma$-ray emission. We found (1) the diffusion coefficient has a weak energy-dependent, and the Kolmogorov type is favored; (2) the magnetic field strength could vary linearly or nonlinearly with radius for different surrounding environments because of possible turbulence in shock downstream region, and a compressional amplification is likely to exist at the shock front; (3) the non-thermal photons from radio to X-ray bands are dominated by synchrotron emission from relativistic electrons, if the GeV-TeV gamma-rays are produced by inverse Compton scattering from these electrons interacting with the background photons, then the X-ray and gamma-ray radial profiles can be reproduced except for the more extended $gamma$-ray emission.
We report the first detection of thermal X-ray line emission from the supernova remnant (SNR) RX J1713.7-3946, the prototype of the small class of synchrotron dominated SNRs. A softness-ratio map generated using XMM-Newton data shows that faint inter ior regions are softer than bright shell regions. Using Suzaku and deep XMM-Newton observations, we have extracted X-ray spectra from the softest area, finding clear line features at 1 keV and 1.35 keV. These lines can be best explained as Ne Ly-alpha and Mg He-alpha from a thermal emission component. Since the abundance ratios of metals to Fe are much higher than solar values in the thermal component, we attribute the thermal emission to reverse-shocked SN ejecta. The measured Mg/Ne, Si/Ne, and Fe/Ne ratios of 2.0-2.6, 1.5-2.0, and <0.05 solar suggest that the progenitor star of RX J1713.7-3946 was a relatively low-mass star (<~20 M_sun), consistent with a previous inference based on the effect of stellar winds of the progenitor star on the surrounding medium. Since the mean blastwave speed of ~6000 km/s (the radius of 9.6 pc divided by the age of 1600 yr) is relatively fast compared with other core-collapse SNRs, we propose that RX J1713.7-3946 is a result of a Type Ib/c supernova whose progenitor was a member of an interacting binary. While our analysis provides strong evidence for X-ray line emission, our interpretation of its nature as thermal emission from SN ejecta requires further confirmation especially through future precision spectroscopic measurements using ASTRO-H.
We analyzed the TeV gamma-ray image of a supernova remnant RX J1713.7$-$3946 (RX J1713) through a comparison with the interstellar medium (ISM) and the non-thermal X-rays. The gamma-ray datasets at two energy bands of $>$2 TeV and $>$250-300 GeV were obtained with H.E.S.S. (H.E.S.S. Collaboration 2018; Aharonian et al. 2007) and utilized in the analysis. We employed a new methodology which assumes that the gamma-ray counts are expressed by a linear combination of two terms; one is proportional to the ISM column density and the other proportional to the X-ray count. We then assume these represent the hadronic and leptonic components, respectively. By fitting the expression to the data pixels, we find that the gamma-ray counts are well represented by a flat plane in a 3D space of the gamma-ray counts, the ISM column density and the X-ray counts. The results using the latest H.E.S.S. data at 4.8 arcmin resolution show that the hadronic and leptonic components occupy $(67pm8)$% and $(33pm8)$% of the total gamma rays, respectively, where the two components have been quantified for the first time. The hadronic component is greater than the leptonic component, which reflects the massive ISM of $sim$10$^4$ $M_{odot}$ associated with the SNR, lending support for the acceleration of the cosmic-ray protons. There is a marginal hint that the gamma rays are suppressed at high gamma-ray counts which may be ascribed to the second order effects including the shock-cloud interaction and the penetration-depth effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا