ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating Total Correlation with Mutual Information Bounds

189   0   0.0 ( 0 )
 نشر من قبل Pengyu Cheng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Total correlation (TC) is a fundamental concept in information theory to measure the statistical dependency of multiple random variables. Recently, TC has shown effectiveness as a regularizer in many machine learning tasks when minimizing/maximizing the correlation among random variables is required. However, to obtain precise TC values is challenging, especially when the closed-form distributions of variables are unknown. In this paper, we introduced several sample-based variational TC estimators. Specifically, we connect the TC with mutual information (MI) and constructed two calculation paths to decompose TC into MI terms. In our experiments, we estimated the true TC values with the proposed estimators in different simulation scenarios and analyzed the properties of the TC estimators.



قيم البحث

اقرأ أيضاً

The mutual information between two jointly distributed random variables $X$ and $Y$ is a functional of the joint distribution $P_{XY},$ which is sometimes difficult to handle or estimate. A coarser description of the statistical behavior of $(X,Y)$ i s given by the marginal distributions $P_X, P_Y$ and the adjacency relation induced by the joint distribution, where $x$ and $y$ are adjacent if $P(x,y)>0$. We derive a lower bound on the mutual information in terms of these entities. The bound is obtained by viewing the channel from $X$ to $Y$ as a probability distribution on a set of possible actions, where an action determines the output for any possible input, and is independently drawn. We also provide an alternative proof based on convex optimization, that yields a generally tighter bound. Finally, we derive an upper bound on the mutual information in terms of adjacency events between the action and the pair $(X,Y)$, where in this case an action $a$ and a pair $(x,y)$ are adjacent if $y=a(x)$. As an example, we apply our bounds to the binary deletion channel and show that for the special case of an i.i.d. input distribution and a range of deletion probabilities, our lower and upper bounds both outperform the best known bounds for the mutual information.
175 - Chongjun Ouyang , Sheng Wu , 2019
To provide an efficient approach to characterize the input-output mutual information (MI) under additive white Gaussian noise (AWGN) channel, this short report fits the curves of exact MI under multilevel quadrature amplitude modulation (M-QAM) signa l inputs via multi-exponential decay curve fitting (M-EDCF). Even though the definition expression for instanious MI versus Signal to Noise Ratio (SNR) is complex and the containing integral is intractable, our new developed fitting formula holds a neat and compact form, which possesses high precision as well as low complexity. Generally speaking, this approximation formula of MI can promote the research of performance analysis in practical communication system under discrete inputs.
105 - Reginald D. Smith 2015
A new method to measure nonlinear dependence between two variables is described using mutual information to analyze the separate linear and nonlinear components of dependence. This technique, which gives an exact value for the proportion of linear de pendence, is then compared with another common test for linearity, the Brock, Dechert and Scheinkman (BDS) test.
The Mutual Information (MI) is an often used measure of dependency between two random variables utilized in information theory, statistics and machine learning. Recently several MI estimators have been proposed that can achieve parametric MSE converg ence rate. However, most of the previously proposed estimators have the high computational complexity of at least $O(N^2)$. We propose a unified method for empirical non-parametric estimation of general MI function between random vectors in $mathbb{R}^d$ based on $N$ i.i.d. samples. The reduced complexity MI estimator, called the ensemble dependency graph estimator (EDGE), combines randomized locality sensitive hashing (LSH), dependency graphs, and ensemble bias-reduction methods. We prove that EDGE achieves optimal computational complexity $O(N)$, and can achieve the optimal parametric MSE rate of $O(1/N)$ if the density is $d$ times differentiable. To the best of our knowledge EDGE is the first non-parametric MI estimator that can achieve parametric MSE rates with linear time complexity. We illustrate the utility of EDGE for the analysis of the information plane (IP) in deep learning. Using EDGE we shed light on a controversy on whether or not the compression property of information bottleneck (IB) in fact holds for ReLu and other rectification functions in deep neural networks (DNN).
115 - Xu Zhang , Wei Cui , 2017
Compressed sensing (CS) with prior information concerns the problem of reconstructing a sparse signal with the aid of a similar signal which is known beforehand. We consider a new approach to integrate the prior information into CS via maximizing the correlation between the prior knowledge and the desired signal. We then present a geometric analysis for the proposed method under sub-Gaussian measurements. Our results reveal that if the prior information is good enough, then the proposed approach can improve the performance of the standard CS. Simulations are provided to verify our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا