ترغب بنشر مسار تعليمي؟ اضغط هنا

Principles of Quantum Communication Theory: A Modern Approach

128   0   0.0 ( 0 )
 نشر من قبل Sumeet Khatri
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is a preliminary version of a book in progress on the theory of quantum communication. We adopt an information-theoretic perspective throughout and give a comprehensive account of fundamental results in quantum communication theory from the past decade (and earlier), with an emphasis on the modern one-shot-to-asymptotic approach that underlies much of todays state-of-the-art research in this field. In Part I, we cover mathematical preliminaries and provide a detailed study of quantum mechanics from an information-theoretic perspective. We also provide an extensive and thorough review of the quantum entropy zoo, and we devote an entire chapter to the study of entanglement measures. Equipped with these essential tools, in Part II we study classical communication (with and without entanglement assistance), entanglement distillation, quantum communication, secret key distillation, and private communication. In Part III, we cover the latest developments in feedback-assisted communication tasks, such as quantum and classical feedback-assisted communication, LOCC-assisted quantum communication, and secret key agreement.



قيم البحث

اقرأ أيضاً

82 - Christian Majenz 2018
In this Thesis, several results in quantum information theory are collected, most of which use entropy as the main mathematical tool. *While a direct generalization of the Shannon entropy to density matrices, the von Neumann entropy behaves different ly. A long-standing open question is, whether there are quantum analogues of unconstrained non-Shannon type inequalities. Here, a new constrained non-von-Neumann type inequality is proven, a step towards a conjectured unconstrained inequality by Linden and Winter. *IID quantum state merging can be optimally achieved using the decoupling technique. The one-shot results by Berta et al. and Anshu at al., however, had to bring in additional mathematical machinery. We introduce a natural generalized decoupling paradigm, catalytic decoupling, that can reproduce the aforementioned results when used analogously to the application of standard decoupling in the asymptotic case. *Port based teleportation, a variant of standard quantum teleportation protocol, cannot be implemented perfectly. We prove several lower bounds on the necessary number of output ports N to achieve port based teleportation for given error and input dimension, showing that N diverges uniformly in the dimension of the teleported quantum system, for vanishing error. As a byproduct, a new lower bound for the size of the program register for an approximate universal programmable quantum processor is derived. *In the last part, we give a new definition for information-theoretic quantum non-malleability, strengthening the previous definition by Ambainis et al. We show that quantum non-malleability implies secrecy, analogous to quantum authentication. Furthermore, non-malleable encryption schemes can be used as a primitive to build authenticating encryption schemes. We also show that the strong notion of authentication recently proposed by Garg et al. can be fulfilled using 2-designs.
130 - Gilad Gour , Mark M. Wilde 2018
The von Neumann entropy of a quantum state is a central concept in physics and information theory, having a number of compelling physical interpretations. There is a certain perspective that the most fundamental notion in quantum mechanics is that of a quantum channel, as quantum states, unitary evolutions, measurements, and discarding of quantum systems can each be regarded as certain kinds of quantum channels. Thus, an important goal is to define a consistent and meaningful notion of the entropy of a quantum channel. Motivated by the fact that the entropy of a state $rho$ can be formulated as the difference of the number of physical qubits and the relative entropy distance between $rho$ and the maximally mixed state, here we define the entropy of a channel $mathcal{N}$ as the difference of the number of physical qubits of the channel output with the relative entropy distance between $mathcal{N}$ and the completely depolarizing channel. We prove that this definition satisfies all of the axioms, recently put forward in [Gour, IEEE Trans. Inf. Theory 65, 5880 (2019)], required for a channel entropy function. The task of quantum channel merging, in which the goal is for the receiver to merge his share of the channel with the environments share, gives a compelling operational interpretation of the entropy of a channel. The entropy of a channel can be negative for certain channels, but this negativity has an operational interpretation in terms of the channel merging protocol. We define Renyi and min-entropies of a channel and prove that they satisfy the axioms required for a channel entropy function. Among other results, we also prove that a smoothed version of the min-entropy of a channel satisfies the asymptotic equipartition property.
Elementary cellular automata (ECA) present iconic examples of complex systems. Though described only by one-dimensional strings of binary cells evolving according to nearest-neighbour update rules, certain ECA rules manifest complex dynamics capable of universal computation. Yet, the classification of precisely which rules exhibit complex behaviour remains a significant challenge. Here we approach this question using tools from quantum stochastic modelling, where quantum statistical memory -- the memory required to model a stochastic process using a class of quantum machines -- can be used to quantify the structure of a stochastic process. By viewing ECA rules as transformations of stochastic patterns, we ask: Does an ECA generate structure as quantified by the quantum statistical memory, and if so, how quickly? We illustrate how the growth of this measure over time correctly distinguishes simple ECA from complex counterparts. Moreover, it provides a more refined means for quantitatively identifying complex ECAs -- providing a spectrum on which we can rank the complexity of ECA by the rate in which they generate structure.
A growing body of work has established the modelling of stochastic processes as a promising area of application for quantum techologies; it has been shown that quantum models are able to replicate the future statistics of a stochastic process whilst retaining less information about the past than any classical model must -- even for a purely classical process. Such memory-efficient models open a potential future route to study complex systems in greater detail than ever before, and suggest profound consequences for our notions of structure in their dynamics. Yet, to date methods for constructing these quantum models are based on having a prior knowledge of the optimal classical model. Here, we introduce a protocol for blind inference of the memory structure of quantum models -- tailored to take advantage of quantum features -- direct from time-series data, in the process highlighting the robustness of their structure to noise. This in turn provides a way to construct memory-efficient quantum models of stochastic processes whilst circumventing certain drawbacks that manifest solely as a result of classical information processing in classical inference protocols.
We discuss the connection between the out-of-time-ordered correlator and the number of harmonics of the phase-space Wigner distribution function. In particular, we show that both quantities grow exponentially for chaotic dynamics, with a rate determi ned by the largest Lyapunov exponent of the underlying classical dynamics, and algebraically -- linearly or quadratically -- for integrable dynamics. It is then possible to use such quantities to detect in the time domain the integrability to chaos crossover in many-body quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا