ﻻ يوجد ملخص باللغة العربية
Availability of affordable and widely applicable interatomic potentials is the key needed to unlock the riches of modern materials modelling. Artificial neural network based approaches for generating potentials are promising; however neural network training requires large amounts of data, sampled adequately from an often unknown potential energy surface. Here we propose a self-consistent approach that is based on crystal structure prediction formalism and is guided by unsupervised data analysis, to construct an accurate, inexpensive and transferable artificial neural network potential. Using this approach, we construct an interatomic potential for Carbon and demonstrate its ability to reproduce first principles results on elastic and vibrational properties for diamond, graphite and graphene, as well as energy ordering and structural properties of a wide range of crystalline and amorphous phases.
We propose a simple scheme to construct composition-dependent interatomic potentials for multicomponent systems that when superposed onto the potentials for the pure elements can reproduce not only the heat of mixing of the solid solution in the enti
The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable t
Transfer printing methods are used to pattern and assemble monolithic carbon nanotube (CNT) thin-film transistors on large-area transparent, flexible substrates. Airbrushed CNT thin-films with sheet resistance 1kOhmsquare^{-1} at 80% transparency wer
Estimating Worst-Case Execution Time (WCET) is of utmost importance for developing Cyber-Physical and Safety-Critical Systems. The systems scheduler uses the estimated WCET to schedule each task of these systems, and failure may lead to catastrophic
The study of chemical reactions in aqueous media is very important for its implications in several fields of science, from biology to industrial processes. Modelling these reactions is however difficult when water directly participates in the reactio