ﻻ يوجد ملخص باللغة العربية
Future wireless networks will be characterized by heterogeneous traffic requirements. Such requirements can be low-latency or minimum-throughput. Therefore, the network has to adjust to different needs. Usually, users with low-latency requirements have to deliver their demand within a specific time frame, i.e., before a deadline, and they co-exist with throughput oriented users. In addition, the users are mobile and they share the same wireless channel. Therefore, they have to adjust their power transmission to achieve reliable communication. However, due to the limited power budget of wireless mobile devices, a power-efficient scheduling scheme is required by the network. In this work, we cast a stochastic network optimization problem for minimizing the packet drop rate while guaranteeing a minimum throughput and taking into account the limited-power capabilities of the users. We apply tools from Lyapunov optimization theory in order to provide an algorithm, named Dynamic Power Control (DPC) algorithm, that solves the formulated problem in realtime. It is proved that the DPC algorithm gives a solution arbitrarily close to the optimal one. Simulation results show that our algorithm outperforms the baseline Largest-Debt-First (LDF) algorithm for short deadlines and multiple users.
In 5G and beyond systems, the notion of latency gets a great momentum in wireless connectivity as a metric for serving real-time communications requirements. However, in many applications, research has pointed out that latency could be inefficient to
Traffic load balancing and radio resource management is key to harness the dense and increasingly heterogeneous deployment of next generation $5$G wireless infrastructure. Strategies for aggregating user traffic from across multiple radio access tech
Traffic load balancing and resource allocation is set to play a crucial role in leveraging the dense and increasingly heterogeneous deployment of multi-radio wireless networks. Traffic aggregation across different access points (APs)/radio access tec
The growing demand for high-speed data, quality of service (QoS) assurance and energy efficiency has triggered the evolution of 4G LTE-A networks to 5G and beyond. Interference is still a major performance bottleneck. This paper studies the applicati
We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between sourcedestination pairs by multi