ﻻ يوجد ملخص باللغة العربية
The time-dependent exact-diagonalization method is used to study the light-induced phase transition of magnetic orders in the anisotropic triangular-lattice Hubbard model. Calculating the spin correlation function, we confirm that the phase transition from the 120$^{circ}$ order to the N{e}el order can take place due to high-frequency periodic fields. We show that the effective Heisenberg-model Hamiltonian derived from the high-frequency expansion by the Floquet theory describes the present system very well and that the ratio of the exchange interactions expressed in terms of the frequency and amplitude of the external field determines the type of the magnetic orders. Our results demonstrate the controllability of the magnetic orders by tuning the external field.
We study magnetic and charge susceptibilities in the half-filled two-dimensional triangular Hubbard model within the dual fermion approximation in the metallic, Mott insulating, and crossover regions of parameter space. In the textcolor{black}{insula
The interplay between spin frustration and charge fluctuation gives rise to an exotic quantum state in the intermediate-interaction regime of the half-filled triangular-lattice Hubbard (TLU) model, while the nature of the state is under debate. Using
We investigate the evolution of the Mott insulators in the triangular lattice Hubbard Model, as a function of hole doping $delta$ in both the strong and intermediate coupling limit. Using the density matrix renormalization group (DMRG) method, at lig
Yb- and Ce-based delafossites were recently identified as effective spin-1/2 antiferromagnets on the triangular lattice. Several Yb-based systems, such as NaYbO2, NaYbS2, and NaYbSe2, exhibit no long-range order down to the lowest measured temperatur
The Hubbard model and its strong-coupling version, the Heisenberg one, have been widely studied on the triangular lattice to capture the essential low-temperature properties of different materials. One example is given by transition metal dichalcogen