ترغب بنشر مسار تعليمي؟ اضغط هنا

Topology Inference for Multi-agent Cooperation under Unmeasurable Latent Input

111   0   0.0 ( 0 )
 نشر من قبل Yushan Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Topology inference is a crucial problem for cooperative control in multi-agent systems. Different from most prior works, this paper is dedicated to inferring the directed network topology from the observations that consist of a single, noisy and finite time-series system trajectory, where the cooperation dynamics is stimulated with the initial network state and the unmeasurable latent input. The unmeasurable latent input refers to intrinsic system signal and extrinsic environment interference. Considering the time-invariant/varying nature of the input, we propose two-layer optimization-based and iterative estimation based topology inference algorithms (TO-TIA and IE-TIA), respectively. TO-TIA allows us to capture the separability of global agent state and eliminates the unknown influence of time-invariant input on system dynamics. IE-TIA further exploits the identifiability and estimability of more general time-varying input and provides an asymptotic solution with desired convergence properties, with higher computation cost compared with TO-TIA. Our novel algorithms relax the dependence of observation scale and leverage the empirical risk reformulation to improve the inference accuracy in terms of the topology structure and edge weight. Comprehensive theoretical analysis and simulations for various topologies are provided to illustrate the inference feasibility and the performance of the proposed algorithms.

قيم البحث

اقرأ أيضاً

This paper develops an efficient multi-agent deep reinforcement learning algorithm for cooperative controls in powergrids. Specifically, we consider the decentralized inverter-based secondary voltage control problem in distributed generators (DGs), w hich is first formulated as a cooperative multi-agent reinforcement learning (MARL) problem. We then propose a novel on-policy MARL algorithm, PowerNet, in which each agent (DG) learns a control policy based on (sub-)global reward but local states from its neighboring agents. Motivated by the fact that a local control from one agent has limited impact on agents distant from it, we exploit a novel spatial discount factor to reduce the effect from remote agents, to expedite the training process and improve scalability. Furthermore, a differentiable, learning-based communication protocol is employed to foster the collaborations among neighboring agents. In addition, to mitigate the effects of system uncertainty and random noise introduced during on-policy learning, we utilize an action smoothing factor to stabilize the policy execution. To facilitate training and evaluation, we develop PGSim, an efficient, high-fidelity powergrid simulation platform. Experimental results in two microgrid setups show that the developed PowerNet outperforms a conventional model-based control, as well as several state-of-the-art MARL algorithms. The decentralized learning scheme and high sample efficiency also make it viable to large-scale power grids.
We present a numerical approach to finding optimal trajectories for players in a multi-body, asset-guarding game with nonlinear dynamics and non-convex constraints. Using the Iterative Best Response (IBR) scheme, we solve for each players optimal str ategy assuming the other players trajectories are known and fixed. Leveraging recent advances in Sequential Convex Programming (SCP), we use SCP as a subroutine within the IBR algorithm to efficiently solve an approximation of each players constrained trajectory optimization problem. We apply the approach to an asset-guarding game example involving multiple pursuers and a single evader (i.e., n-versus-1 engagements). Resulting evader trajectories are tested in simulation to verify successful evasion against pursuers using conventional intercept guidance laws.
224 - Qingrui Zhang , Hao Dong , Wei Pan 2020
Decentralized multi-agent control has broad applications, ranging from multi-robot cooperation to distributed sensor networks. In decentralized multi-agent control, systems are complex with unknown or highly uncertain dynamics, where traditional mode l-based control methods can hardly be applied. Compared with model-based control in control theory, deep reinforcement learning (DRL) is promising to learn the controller/policy from data without the knowing system dynamics. However, to directly apply DRL to decentralized multi-agent control is challenging, as interactions among agents make the learning environment non-stationary. More importantly, the existing multi-agent reinforcement learning (MARL) algorithms cannot ensure the closed-loop stability of a multi-agent system from a control-theoretic perspective, so the learned control polices are highly possible to generate abnormal or dangerous behaviors in real applications. Hence, without stability guarantee, the application of the existing MARL algorithms to real multi-agent systems is of great concern, e.g., UAVs, robots, and power systems, etc. In this paper, we aim to propose a new MARL algorithm for decentralized multi-agent control with a stability guarantee. The new MARL algorithm, termed as a multi-agent soft-actor critic (MASAC), is proposed under the well-known framework of centralized-training-with-decentralized-execution. The closed-loop stability is guaranteed by the introduction of a stability constraint during the policy improvement in our MASAC algorithm. The stability constraint is designed based on Lyapunovs method in control theory. To demonstrate the effectiveness, we present a multi-agent navigation example to show the efficiency of the proposed MASAC algorithm.
79 - Zhe Xu , Agung Julius 2016
In this paper, we define a novel census signal temporal logic (CensusSTL) that focuses on the number of agents in different subsets of a group that complete a certain task specified by the signal temporal logic (STL). CensusSTL consists of an inner l ogic STL formula and an outer logic STL formula. We present a new inference algorithm to infer CensusSTL formulae from the trajectory data of a group of agents. We first identify the inner logic STL formula and then infer the subgroups based on whether the agents behaviors satisfy the inner logic formula at each time point. We use two different approaches to infer the subgroups based on similarity and complementarity, respectively. The outer logic CensusSTL formula is inferred from the census trajectories of different subgroups. We apply the algorithm in analyzing data from a soccer match by inferring the CensusSTL formula for different subgroups of a soccer team.
102 - Yuanchao Xu , Amal Feriani , 2021
Multi-Agent Reinforcement Learning (MARL) is a challenging subarea of Reinforcement Learning due to the non-stationarity of the environments and the large dimensionality of the combined action space. Deep MARL algorithms have been applied to solve di fferent task offloading problems. However, in real-world applications, information required by the agents (i.e. rewards and states) are subject to noise and alterations. The stability and the robustness of deep MARL to practical challenges is still an open research problem. In this work, we apply state-of-the art MARL algorithms to solve task offloading with reward uncertainty. We show that perturbations in the reward signal can induce decrease in the performance compared to learning with perfect rewards. We expect this paper to stimulate more research in studying and addressing the practical challenges of deploying deep MARL solutions in wireless communications systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا