ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Latency-aware DNN Optimization with GPU Runtime Analysis and Tail Effect Elimination

284   0   0.0 ( 0 )
 نشر من قبل Fuxun Yu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the superb performance of State-Of-The-Art (SOTA) DNNs, the increasing computational cost makes them very challenging to meet real-time latency and accuracy requirements. Although DNN runtime latency is dictated by model property (e.g., architecture, operations), hardware property (e.g., utilization, throughput), and more importantly, the effective mapping between these two, many existing approaches focus only on optimizing model property such as FLOPS reduction and overlook the mismatch between DNN model and hardware properties. In this work, we show that the mismatch between the varied DNN computation workloads and GPU capacity can cause the idle GPU tail effect, leading to GPU under-utilization and low throughput. As a result, the FLOPs reduction cannot bring effective latency reduction, which causes sub-optimal accuracy versus latency trade-offs. Motivated by this, we propose a GPU runtime-aware DNN optimization methodology to eliminate such GPU tail effect adaptively on GPU platforms. Our methodology can be applied on top of existing SOTA DNN optimization approaches to achieve better latency and accuracy trade-offs. Experiments show 11%-27% latency reduction and 2.5%-4.0% accuracy improvement over several SOTA DNN pruning and NAS methods, respectively

قيم البحث

اقرأ أيضاً

Graphics Processing Units (GPUs) employ large register files to accommodate all active threads and accelerate context switching. Unfortunately, register files are a scalability bottleneck for future GPUs due to long access latency, high power consump tion, and large silicon area provisioning. Prior work proposes hierarchical register file to reduce the register file power consumption by caching registers in a smaller register file cache. Unfortunately, this approach does not improve register access latency due to the low hit rate in the register file cache. In this paper, we propose the Latency-Tolerant Register File (LTRF) architecture to achieve low latency in a two-level hierarchical structure while keeping power consumption low. We observe that compile-time interval analysis enables us to divide GPU program execution into intervals with an accurate estimate of a warps aggregate register working-set within each interval. The key idea of LTRF is to prefetch the estimated register working-set from the main register file to the register file cache under software control, at the beginning of each interval, and overlap the prefetch latency with the execution of other warps. We observe that register bank conflicts while prefetching the registers could greatly reduce the effectiveness of LTRF. Therefore, we devise a compile-time register renumbering technique to reduce the likelihood of register bank conflicts. Our experimental results show that LTRF enables high-capacity yet long-latency main GPU register files, paving the way for various optimizations. As an example optimization, we implement the main register file with emerging high-density high-latency memory technologies, enabling 8X larger capacity and improving overall GPU performance by 34%.
133 - Jie Zhang , Myoungsoo Jung 2020
We propose ZnG, a new GPU-SSD integrated architecture, which can maximize the memory capacity in a GPU and address performance penalties imposed by an SSD. Specifically, ZnG replaces all GPU internal DRAMs with an ultra-low-latency SSD to maximize th e GPU memory capacity. ZnG further removes performance bottleneck of the SSD by replacing its flash channels with a high-throughput flash network and integrating SSD firmware in the GPUs MMU to reap the benefits of hardware accelerations. Although flash arrays within the SSD can deliver high accumulated bandwidth, only a small fraction of such bandwidth can be utilized by GPUs memory requests due to mismatches of their access granularity. To address this, ZnG employs a large L2 cache and flash registers to buffer the memory requests. Our evaluation results indicate that ZnG can achieve 7.5x higher performance than prior work.
Image bitmaps have been widely used in in-memory applications, which consume lots of storage space and energy. Compared with legacy DRAM, non-volatile memories (NVMs) are suitable for bitmap storage due to the salient features in capacity and power s avings. However, NVMs suffer from higher latency and energy consumption in writes compared with reads. Although compressing data in write accesses to NVMs on-the-fly reduces the bit-writes in NVMs, existing precise or approximate compression schemes show limited performance improvements for data of bitmaps, due to the irregular data patterns and variance in data. We observe that the data containing bitmaps show the pixel-level similarity due to the analogous contents in adjacent pixels. By exploiting the pixel-level similarity, we propose SimCom, an efficient similarity-aware compression scheme in hardware layer, to compress data for each write access on-the-fly. The idea behind SimCom is to compress continuous similar words into the pairs of base words with runs. With the aid of domain knowledge of images, SimCom adaptively selects an appropriate compression mode to achieve an efficient trade-off between image quality and memory performance. We implement SimCom on GEM5 with NVMain and evaluate the performance with real-world workloads. Our results demonstrate that SimCom reduces 33.0%, 34.8% write latency and saves 28.3%, 29.0% energy than state-of-the-art FPC and BDI with minor quality loss of 3%.
Transformer-based language models such as BERT provide significant accuracy improvement for a multitude of natural language processing (NLP) tasks. However, their hefty computational and memory demands make them challenging to deploy to resource-cons trained edge platforms with strict latency requirements. We present EdgeBERT, an in-depth algorithm-hardware co-design for latency-aware energy optimization for multi-task NLP. EdgeBERT employs entropy-based early exit predication in order to perform dynamic voltage-frequency scaling (DVFS), at a sentence granularity, for minimal energy consumption while adhering to a prescribed target latency. Computation and memory footprint overheads are further alleviated by employing a calibrated combination of adaptive attention span, selective network pruning, and floating-point quantization. Furthermore, in order to maximize the synergistic benefits of these algorithms in always-on and intermediate edge computing settings, we specialize a 12nm scalable hardware accelerator system, integrating a fast-switching low-dropout voltage regulator (LDO), an all-digital phase-locked loop (ADPLL), as well as, high-density embedded non-volatile memories (eNVMs) wherein the sparse floating-point bit encodings of the shared multi-task parameters are carefully stored. Altogether, latency-aware multi-task NLP inference acceleration on the EdgeBERT hardware system generates up to 7x, 2.5x, and 53x lower energy compared to the conventional inference without early stopping, the latency-unbounded early exit approach, and CUDA adaptations on an Nvidia Jetson Tegra X2 mobile GPU, respectively.
144 - Miao Yin , Yang Sui , Siyu Liao 2021
Advanced tensor decomposition, such as Tensor train (TT) and Tensor ring (TR), has been widely studied for deep neural network (DNN) model compression, especially for recurrent neural networks (RNNs). However, compressing convolutional neural network s (CNNs) using TT/TR always suffers significant accuracy loss. In this paper, we propose a systematic framework for tensor decomposition-based model compression using Alternating Direction Method of Multipliers (ADMM). By formulating TT decomposition-based model compression to an optimization problem with constraints on tensor ranks, we leverage ADMM technique to systemically solve this optimization problem in an iterative way. During this procedure, the entire DNN model is trained in the original structure instead of TT format, but gradually enjoys the desired low tensor rank characteristics. We then decompose this uncompressed model to TT format and fine-tune it to finally obtain a high-accuracy TT-format DNN model. Our framework is very general, and it works for both CNNs and RNNs, and can be easily modified to fit other tensor decomposition approaches. We evaluate our proposed framework on different DNN models for image classification and video recognition tasks. Experimental results show that our ADMM-based TT-format models demonstrate very high compression performance with high accuracy. Notably, on CIFAR-100, with 2.3X and 2.4X compression ratios, our models have 1.96% and 2.21% higher top-1 accuracy than the original ResNet-20 and ResNet-32, respectively. For compressing ResNet-18 on ImageNet, our model achieves 2.47X FLOPs reduction without accuracy loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا