ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of modified light-flavor hadron spectra on particle yields in the statistical hadronization model

255   0   0.0 ( 0 )
 نشر من قبل Johanna Stachel
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Hadron production in relativistic nuclear collisions is well described in the framework of the Statistical Hadronization Model (SHM). We investigate the influence on SHM predictions of hadron mass spectra for light-flavor baryons and mesons modified by the addition of about 500 new states as predicted by lattice QCD and a relativistic quark model. The deterioration of the resulting thermodynamic fit quality obtained for PbPb collision data at sqrt(s_nn) = 2.76 TeV suggests that the additional states are not suited to be naively used since also interactions among the states as well as non-resonant contributions need to be considered in the SHM approach. Incorporating these effects via the pion nucleon interaction determined from measured phase shifts leads again to excellent reproduction of the experimental data. This is a strong indication that at least the additional nucleon excited states cannot be understood and used as independent resonances.



قيم البحث

اقرأ أيضاً

The description of hadron production in relativistic heavy-ion collisions in the statistical hadronization model is very good, over a broad range of collision energy. We outline this both for the light (u, d, s) and heavy (charm) quarks and discuss t he connection it brings to the phase diagram of QCD.
The unified set of yields of particles produced in proton-proton collisions at $sqrt{s}$ = 17.3 GeV (laboratory beam momentum 158 GeV/c) is evaluated, combining the experimental results of the NA49 and NA61/SHINE collaborations at the CERN SPS. With the statistical hadronization code Thermal-Fist we confirm the unacceptably high value of $chi^2$, both in the canonical and grand canonical - strangeness canonical approach, and the common volume for all the hadrons. The use of the energy-dependent width of the Breit-Wigner parametrization for the mass distributions of unstable particles improves the quality of the description of particle yields only slightly. We confirm the observation that exclusion of the $phi$ meson yield makes the fit result acceptable. The complete experimental data set of particle yields can be reasonably fitted if the canonical volumes of hadrons without and with open strangeness are allowed to vary independently. The canonical volume of strangeness was found larger than that for non-strange hadrons, which is compatible with the femtoscopy measurements of p+p system at $sqrt{s} = $ 27.4 MeV and 900 MeV. The model with the best-fit parameters allows to predict the yields of several not yet measured particles emitted from p+p at $sqrt{s}$ = 17.3 GeV.
We investigate the hadron production from the vortical quark-gluon plasma created in heavy-ion collisions. Based on the quark-coalescence and statistical hadronization models, we show that total hadron yields summed over the spin components are enhan ced by the local vorticity with quadratic dependence. The enhancement factor amounts to be a few percent and may be detectable within current experimental sensitivities. We also show that the effect is stronger for hadrons with larger spin, and thus propose a new signature of the local vorticity, which may be detected by the yield ratio of distinct hadron species having different spins such as $phi$ and $eta$. The vorticity dependence of hadron yields seems robust, with consistent predictions in both of the hadron production mechanisms for reasonable values of the vorticity strength estimated for heavy-ion collisions.
Calculations and predictions are presented within the framework of the statistical hadronization model for transverse momentum spectra of the charmonium states J/$psi$, $psi(2S)$ and $X(3872)$ produced in nucleus-nucleus collisions at LHC energies. T he results are confronted with available data and exhibit very good agreement by using particle flow profiles from state-of-the-art hydrodynamic calculations. For $X(3872)$ production in Pb-Pb collisions we predict a transverse momentum distribution similar in shape to that for J/$psi$ with a strong enhancement at low transverse momenta and a production yield of about 1% relative to that for J/$psi$.
114 - Min He , Ralf Rapp 2019
Understanding the hadronization of the quark-gluon plasma (QGP) remains a challenging problem in the study of strong-interaction matter as produced in ultrarelativistic heavy-ion collisions (URHICs). The large mass of heavy quarks renders them excell ent tracers of the color neutralization process of the QGP when they convert into various heavy-flavor (HF) hadrons. We develop a 4-momentum conserving recombination model for HF mesons and baryons that recovers the thermal and chemical equilibrium limits and accounts for space-momentum correlations (SMCs) of heavy quarks with partons of the hydrodynamically expanding QGP, thereby resolving a long-standing problem in quark coalescence models. The SMCs enhance the recombination of fast-moving heavy quarks with high-flow thermal quarks in the outer regions of the fireball. We also improve the hadro-chemistry with missing charm-baryon states, previously found to describe the large $Lambda_c/D^0$ ratio observed in proton-proton collisions. Both SMCs and hadro-chemistry, as part of our HF hydro-Langevin-recombination model for the strongly coupled QGP, importantly figure in the description of recent data for the $Lambda_c/D^0$ ratio and $D$-meson elliptic flow in URHICs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا