ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum black hole spectroscopy: probing the quantum nature of the black hole area using LIGO-Virgo ringdown detections

84   0   0.0 ( 0 )
 نشر من قبل Danny Laghi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a thorough observational investigation of the heuristic quantised ringdown model presented in Foit & Kleban (2019). This model is based on the Bekenstein-Mukhanov conjecture, stating that the area of a black hole horizon is an integer multiple of the Planck area $l_P^2$ multiplied by a phenomenological constant, $alpha$, which can be viewed as an additional black hole intrinsic parameter. Our approach is based on a time-domain analysis of the gravitational wave signals produced by the ringdown phase of binary black hole mergers detected by the LIGO and Virgo collaboration. Employing a full Bayesian formalism and taking into account the complete correlation structure among the black hole parameters, we show that the value of $alpha$ cannot be constrained using only GW150914, in contrast to what was suggested in Foit & Kleban (2019). We proceed to repeat the same analysis on the new gravitational wave events detected by the LIGO and Virgo Collaboration up to 1 October 2019, obtaining a combined-event measure equal to $alpha = 15.6^{+20.5}_{-13.3}$ and a combined log odds ratio of $0.1 pm 0.6$, implying that current data are not informative enough to favour or discard this model against general relativity. We then show that using a population of $mathcal{O}(20)$ GW150914-like simulated events - detected by the current infrastructure of ground-based detectors at their design sensitivity - it is possible to confidently falsify the quantised model or prove its validity, in which case probing $alpha$ at the few % level. Finally we classify the stealth biases that may show up in a population study.

قيم البحث

اقرأ أيضاً

Deep conceptual problems associated with classical black holes can be addressed in string theory by the fuzzball paradigm, which provides a microscopic description of a black hole in terms of a thermodynamically large number of regular, horizonless, geometries with much less symmetry than the corresponding black hole. Motivated by the tantalizing possibility to observe quantum gravity signatures near astrophysical compact objects in this scenario, we perform the first $3+1$ numerical simulations of a scalar field propagating on a large class of multicenter geometries with no spatial isometries arising from ${cal N}=2$ four-dimensional supergravity. We identify the prompt response to the perturbation and the ringdown modes associated with the photon sphere, which are similar to the black-hole case, and the appearence of echoes at later time, which is a smoking gun of the absence of a horizon and of the regular interior of these solutions. The response is in agreement with an analytical model based on geodesic motion in these complicated geometries. Our results provide the first numerical evidence for the dynamical linear stability of fuzzballs, and pave the way for an accurate discrimination between fuzzballs and black holes using gravitational-wave spectroscopy.
The black hole uniqueness and the no-hair theorems imply that the quasinormal spectrum of any astrophysical black hole is determined solely by its mass and spin. The countably infinite number of quasinormal modes of a Kerr black hole are thus related to each other and any deviations from these relations provide a strong hint for physics beyond the general theory of relativity. To test the no-hair theorem using ringdown signals, it is necessary to detect at least two quasinormal modes. In particular, one can detect the fundamental mode along with a subdominant overtone or with another angular mode, depending on the mass ratio and the spins of the progenitor binary. Also in the light of the recent discovery of GW190412, studying how the mass ratio affects the prospect of black hole spectroscopy using overtones or angular modes is pertinent, and this is the major focus of our study. First, we provide ready-to-use fits for the amplitudes and phases of both the angular modes and overtones as a function of mass ratio $qin[0,10]$. Using these fits we estimate the minimum signal-to-noise ratio for detectability, resolvability, and measurability of subdominant modes/tones. We find that performing black-hole spectroscopy with angular modes is preferable when the binary mass ratio is larger than $qapprox 1.2$ (provided that the source is not located at a particularly disfavoured inclination angle). For nonspinning, equal-mass binary black holes, the overtones seem to be the only viable option to perform a spectroscopy test of the no-hair theorem. However this would require a large ringdown signal-to-noise ratio ($approx 100$ for a $5%$ accuracy test with two overtones) and the inclusion of more than one overtone to reduce modelling errors, making black-hole spectroscopy with overtones impractical in the near future.
In General Relativity, the spacetimes of black holes have three fundamental properties: (i) they are the same, to lowest order in spin, as the metrics of stellar objects; (ii) they are independent of mass, when expressed in geometric units; and (iii) they are described by the Kerr metric. In this paper, we quantify the upper bounds on potential black-hole metric deviations imposed by observations of black-hole shadows and of binary black-hole inspirals in order to explore the current experimental limits on possible violations of the last two predictions. We find that both types of experiments provide correlated constraints on deviation parameters that are primarily in the tt-components of the spacetimes, when expressed in areal coordinates. We conclude that, currently, there is no evidence for a deviations from the Kerr metric across the 8 orders of magnitudes in masses and 16 orders in curvatures spanned by the two types of black holes. Moreover, because of the particular masses of black holes in the current sample of gravitational-wave sources, the correlations imposed by the two experiments are aligned and of similar magnitudes when expressed in terms of the far field, post-Newtonian predictions of the metrics. If a future coalescing black-hole binary with two low-mass (e.g., ~3 Msun) components is discovered, the degeneracy between the deviation parameters can be broken by combining the inspiral constraints with those from the black-hole shadow measurements.
Validating the black-hole no-hair theorem with gravitational-wave observations of compact binary coalescences provides a compelling argument that the remnant object is indeed a black hole as described by the general theory of relativity. This require s performing a spectroscopic analysis of the post-merger signal and resolving the frequencies of either different angular modes or overtones (of the same angular mode). For a nearly-equal mass binary black-hole system, only the dominant angular mode ($l=m=2$) is sufficiently excited and the overtones are instrumental to perform this test. Here we investigate the robustness of modelling the post-merger signal of a binary black hole coalescence as a superposition of overtones. Further, we study the bias expected in the recovered frequencies as a function of the start time of a spectroscopic analysis and provide a computationally cheap procedure to choose it based on the interplay between the expected statistical error due to the detector noise and the systematic errors due to waveform modelling. Moreover, since the overtone frequencies are closely spaced, we find that resolving the overtones is particularly challenging and requires a loud ringdown signal. Rayleighs resolvability criterion suggests that in an optimistic scenario a ringdown signal-to-noise ratio larger than $sim 30$ (achievable possibly with LIGO at design sensitivity and routinely with future interferometers such as Einstein Telescope, Cosmic Explorer, and LISA) is necessary to resolve the overtone frequencies. We then conclude by discussing some conceptual issues associated with black-hole spectroscopy with overtones.
The early inspiral of massive stellar-mass black-hole binaries merging in LIGOs sensitivity band will be detectable at low frequencies by the upcoming space mission LISA. LISA will predict, with years of forewarning, the time and frequency with which binaries will be observed by LIGO. We will, therefore, find ourselves in the position of knowing that a binary is about to merge, with the unprecedented opportunity to optimize ground-based operations to increase their scientific payoff. We apply this idea to detections of multiple ringdown modes, or black-hole spectroscopy. Narrowband tunings can boost the detectors sensitivity at frequencies corresponding to the first subdominant ringdown mode and largely improve our prospects to experimentally test the Kerr nature of astrophysical black holes. We define a new consistency parameter between the different modes, called $delta {rm GR}$, and show that, in terms of this measure, optimized configurations have the potential to double the effectiveness of black-hole spectroscopy when compared to standard broadband setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا