ترغب بنشر مسار تعليمي؟ اضغط هنا

From Starspots to Stellar Coronal Mass Ejections -- Revisiting Empirical Stellar Relations

85   0   0.0 ( 0 )
 نشر من قبل Konstantin Herbst
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Upcoming missions, including the James Webb Space Telescope, will soon characterize the atmospheres of terrestrial-type exoplanets in habitable zones around cool K- and M-type stars searching for atmospheric biosignatures. Recent observations suggest that the ionizing radiation and particle environment from active cool planet hosts may be detrimental for exoplanetary habitability. Since no direct information on the radiation field is available, empirical relations between signatures of stellar activity, including the sizes and magnetic fields of starspots, are often used. Here, we revisit the empirical relation between the starspot size and the effective stellar temperature and evaluate its impact on estimates of stellar flare energies, coronal mass ejections, and fluxes of the associated stellar energetic particle events.


قيم البحث

اقرأ أيضاً

89 - Heidi Korhonen 2016
Coronal mass ejections (CMEs) are explosive events that occur basically daily on the Sun. It is thought that these events play a crucial role in the angular momentum and mass loss of late-type stars, and also shape the environment in which planets fo rm and live. Stellar CMEs can be detected in optical spectra in the Balmer lines, especially in Halpha, as blue-shifted extra emission/absorption. To increase the detection probability one can monitor young open clusters, in which the stars are due to their youth still rapid rotators, and thus magnetically active and likely to exhibit a large number of CMEs. Using ESO facilities and the Nordic Optical Telescope we have obtained time series of multi-object spectroscopic observations of late-type stars in six open clusters with ages ranging from 15 Myrs to 300 Myrs. Additionally, we have studied archival data of numerous active stars. These observations will allow us to obtain information on the occurrence rate of CMEs in late-type stars with different ages and spectral types. Here we report on the preliminary outcome of our studies.
Solar coronal dimmings have been observed extensively in the past two decades and are believed to have close association with coronal mass ejections (CMEs). Recent study found that coronal dimming is the only signature that could differentiate powerf ul ares that have CMEs from those that do not. Therefore, dimming might be one of the best candidates to observe the stellar CMEs on distant Sun-like stars. In this study, we investigate the possibility of using coronal dimming as a proxy to diagnose stellar CMEs. By simulating a realistic solar CME event and corresponding coronal dimming using a global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we first demonstrate the capability of the model to reproduce solar observations. We then extend the model for simulating stellar CMEs by modifying the input magnetic flux density as well as the initial magnetic energy of the CME flux rope. Our result suggests that with improved instrument sensitivity, it is possible to detect the coronal dimming signals induced by the stellar CMEs.
Coronal mass ejections (CMEs) on stars other than the Sun have proven very difficult to detect. One promising pathway lies in the detection of type II radio bursts. Their appearance and distinctive properties are associated with the development of an outward propagating CME-driven shock. However, dedicated radio searches have not been able to identify these transient features in other stars. Large Alfven speeds and the magnetic suppression of CMEs in active stars have been proposed to render stellar eruptions radio-quiet. Employing 3D magnetohydrodynamic simulations, we study here the distribution of the coronal Alfven speed, focusing on two cases representative of a young Sun-like star and a mid-activity M-dwarf (Proxima Centauri). These results are compared with a standard solar simulation and used to characterize the shock-prone regions in the stellar corona and wind. Furthermore, using a flux-rope eruption model, we drive realistic CME events within our M-dwarf simulation. We consider eruptions with different energies to probe the regimes of weak and partial CME magnetic confinement. While these CMEs are able to generate shocks in the corona, those are pushed much farther out compared to their solar counterparts. This drastically reduces the resulting type II radio burst frequencies down to the ionospheric cutoff, which impedes their detection with ground-based instrumentation.
Stealth coronal mass ejections (CMEs) are eruptions from the Sun that have no obvious low coronal signature. These CMEs are characteristically slower events, but can still be geoeffective and affect space weather at Earth. Therefore, understanding th e science underpinning these eruptions will greatly improve our ability to detect and, eventually, forecast them. We present a study of two stealth CMEs analysed using advanced image processing techniques that reveal their faint signatures in observations from the extreme ultraviolet (EUV) imagers onboard the Solar and Heliospheric Observatory (SOHO), Solar Dynamics Observatory (SDO), and Solar Terrestrial Relations Observatory (STEREO) spacecraft. The different viewpoints given by these spacecraft provide the opportunity to study each eruption from above and the side contemporaneously. For each event, EUV and magnetogram observations were combined to reveal the coronal structure that erupted. For one event, the observations indicate the presence of a magnetic flux rope before the CMEs fast rise phase. We found that both events originated in active regions and are likely to be sympathetic CMEs triggered by a nearby eruption. We discuss the physical processes that occurred in the time leading up to the onset of each stealth CME and conclude that these eruptions are part of the low-energy and velocity tail of a distribution of CME events, and are not a distinct phenomenon.
Coronal mass ejections (CMEs) originate from closed magnetic field regions on the Sun, which are active regions and quiescent filament regions. The energetic populations such as halo CMEs, CMEs associated with magnetic clouds, geoeffective CMEs, CMEs associated with solar energetic particles and interplanetary type II radio bursts, and shock-driving CMEs have been found to originate from sunspot regions. The CME and flare occurrence rates are found to be correlated with the sunspot number, but the correlations are significantly weaker during the maximum phase compared to the rise and declining phases. We suggest that the weaker correlation results from high-latitude CMEs from the polar crown filament regions that are not related to sunspots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا