ﻻ يوجد ملخص باللغة العربية
Although computational complexity is a fundamental aspect of program behavior, it is often at odds with common type theoretic principles such as function extensionality, which identifies all functions with the same $textit{input-output}$ behavior. We present a computational type theory called $mathbf{CATT}$ that has a primitive notion of cost (the number of evaluation steps). We introduce a new dependent function type funtime whose semantics can be viewed as a cost-aware version of function extensionality. We prove a collection of lemmas for $mathbf{CATT}$, including a novel introduction rule for the new funtime type. $mathbf{CATT}$ can be simultaneously viewed as a framework for analyzing computational complexity of programs and as the beginnings of a semantic foundation for characterizing feasible mathematical proofs.
Gradually typed languages are designed to support both dynamically typed and statically typed programming styles while preserving the benefits of each. While existing gradual type soundness theorems for these languages aim to show that type-based rea
We describe a Martin-Lof style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used to represent higher-order abstract syntax (HOAS) trees with the extensional function space that describes (recursive
We present gradual type theory, a logic and type theory for call-by-name gradual typing. We define the central constructions of gradual typing (the dynamic type, type casts and type error) in a novel way, by universal properties relative to new judgm
As quantum computers become real, it is high time we come up with effective techniques that help programmers write correct quantum programs. In classical computing, formal verification and sound static type systems prevent several classes of bugs fro
We show canonicity and normalization for dependent type theory with a cumulative sequence of universes and a type of Boolean. The argument follows the usual notion of reducibility, going back to Godels Dialectica interpretation and the work of Tait.