ﻻ يوجد ملخص باللغة العربية
Performing deep level transient spectroscopy (DLTS) on Schottky diodes, we investigated defect levels below the conduction band minima (Ec) in Czochralski (CZ) grown unintentionally-doped (UID) and vertical gradient freeze (VGF)-grown Zr-doped beta-Ga2O3 crystals. In UID crystals with an electron concentration of 10^17 cm-3, we observe levels at 0.18 eV and 0.46 eV in addition to the previously reported 0.86 (E2) and 1.03 eV (E3) levels. For 10^18 cm-3 Zr-doped Ga2O3, signatures at 0.30 eV (E15) and 0.71 eV (E16) are present. For the highest Zr doping of 5*10^18 cm-3, we observe only one signature at 0.59 eV. Electric field-enhanced emission rates are demonstrated via increasing the reverse bias during measurement. The 0.86 eV signature in the UID sample displays phonon-assisted tunneling enhanced thermal emission and is consistent with the widely reported E2 (FeGa) defect. The 0.71 eV (E16) signature in the lower-Zr-doped crystal also exhibits phonon-assisted tunneling emission enhancement. Taking into account that the high doping in the Zr-doped diodes also increases the electric field, we propose that the 0.59 eV signature in the highest Zr-doped sample likely corresponds to the 0.71 eV signature in lower-doped samples. Our analysis highlights the importance of testing for and reporting on field-enhanced emission especially the electric field present during DLTS and other characterization experiments on beta-Ga2O3 along with the standard emission energy, cross-section, and lambda-corrected trap density. This is important because of the intended use of beta-Ga2O3 in high-field devices and the many orders of magnitude of possible doping.
The effects of hydrogen incorporation into beta-Ga2O3 thin films have been investigated by chemical, electrical and optical characterization techniques. Hydrogen incorporation was achieved by remote plasma doping without any structural alterations of
Cathodoluminescence spectra were measured to determine the characteristics of luminescence bands and carrier dynamics in beta-Ga2O3 bulk single crystals. The CL emission was found to be dominated by a broad UV emission peaked at 3.40 eV, which exhibi
We synthesized strontium titanate SrTiO$_3$ (STO), Zr doped $text{Sr}_text{1-x}text{Zr}_text{x}text{Ti}text{O}_3$ and (Zr, Ni) co-doped $text{Sr}_text{1-x}text{Zr}_text{x}text{Ti}_text{1-y}text{Ni}_text{y}text{O}_3$ samples using solid state reaction
Sr$_{2}$FeMoO$_6$ is a double perovskite compound, known for its high temperature behavior. Combining different magnetic and spectroscopic tools, we show that this compound can be driven to rare example of antiferromagnetic metallic state through hea
Doping of semiconductors by impurity atoms enabled their widespread technological application in micro and opto-electronics. For colloidal semiconductor nanocrystals, an emerging family of materials where size, composition and shape-control offer wid