ﻻ يوجد ملخص باللغة العربية
Reprocessing of regional-scale airborne electromagnetic data (AEM) is used to build a 3D geomodel of the Nasia sub-basin. The resulting 3D geomodel integrates all the prior pieces of information brought by electromagnetic data, lithologic logs, and prior geological knowledge. The AEM data, consisting of GEOTEM B-field data, were originally collected for mineral exploration. Thus, those B-field data had to be (re)processed and properly inverted as the original survey and data handling were designed for the detection of potential mineral targets and not for detailed geological mapping. These new
Regional characterization of the continental crust has classically been performed through either geologic mapping, geochemical sampling, or geophysical surveys. Rarely are these techniques fully integrated, due to limits of data coverage, quality, an
The three-dimensional (3D) geological models are the typical and key data source in the 3D mineral prospecitivity modeling. Identifying prospectivity-informative predictor variables from the 3D geological models is a challenging and tedious task. Mot
Manual interpretation of data collected from drill holes for mineral or oil and gas exploration is time-consuming and subjective. Identification of geological boundaries and distinctive rock physical property domains is the first step of interpretati
Utilizing data available from the Kentucky Geonet (KYGeonet.ky.gov) the fossil fuel mining locations created by the Kentucky Geological Survey geo-locating oil and gas wells are mapped using ESRI ArcGIS in Kentucky single plain 1602 ft projection. Th
Data assimilation in subsurface flow systems is challenging due to the large number of flow simulations often required, and by the need to preserve geological realism in the calibrated (posterior) models. In this work we present a deep-learning-based