ﻻ يوجد ملخص باللغة العربية
We study the elastic response of a stationarily driven system of a cavity field strongly coupled with molecular excitons, taking into account the main dissipation channels due to the finite cavity linewidth and molecular vibrations. We show that the frequently used coupled oscillator model fails in describing this response especially due to the non-Lorentzian dissipation of the molecules to their vibrations. Signatures of this failure are the temperature dependent minimum point of the polariton peak splitting, uneven polariton peak height at the minimum splitting, and the asymmetric shape of the polariton peaks even at the experimentally accessed zero-detuning point. Using a rather generic yet representative model of molecular vibrations, we predict the polariton response in various conditions, depending on the temperature, molecular Stokes shift and vibration frequencies, and the size of the Rabi splitting. Our results can be used as a sanity check of the experiments trying to prove results originating from strong coupling, such as vacuum-enhanced chemical reaction rate.
We construct a model describing the response of a hybrid system where the electromagnetic field - in particular, surface plasmon polaritons - couples strongly with electronic excitations of atoms or molecules. Our approach is based on the input-outpu
Recent ultrafast optical experiments show that excitons in large biological light-harvesting complexes are coupled to molecular vibration modes. These high-frequency vibrations will not only affect the optical response, but also drive the exciton tra
Infrared nanospectroscopy based on Fourier transform infrared near-field spectroscopy (nano-FTIR) is an emerging nanoanalytical tool with large application potential for label-free mapping and identification of organic and inorganic materials with na
Molecular vibrations underpin important phenomena such as spectral properties, energy transfer, and molecular bonding. However, obtaining a detailed understanding of the vibrational structure of even small molecules is computationally expensive. Whil
Quantum pumping, in its different forms, is attracting attention from different fields, from fundamental quantum mechanics, to nanotechnology, to superconductivity. We investigate the crossover of quantum pumping from the adiabatic to the anti-adiaba