ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Energy Survey Year 3 Results: Weak Lensing Shape Catalogue

75   0   0.0 ( 0 )
 نشر من قبل Marco Gatti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present and characterise the galaxy shape catalogue from the first 3 years of Dark Energy Survey (DES) observations, over an effective area of ~4143 deg$^2$ of the southern sky. We describe our data analysis process and our self-calibrating shear measurement pipeline METACALIBRATION, which builds and improves upon the pipeline used in the DES Year 1 analysis in several aspects. The DES Year 3 weak-lensing shape catalogue consists of 100,204,026 galaxies, measured in the $riz$ bands, resulting in a weighted source number density of $n_{rm eff} = 5.59$ gal/arcmin$ ^{2}$ and corresponding shape noise $sigma_e = 0.261$. We perform a battery of internal null tests on the catalogue, including tests on systematics related to the point-spread function (PSF) modelling, spurious catalogue B-mode signals, catalogue contamination, and galaxy properties.



قيم البحث

اقرأ أيضاً

We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 square degrees with a median redshift of $0.59$. The catalogues cover two main fields: Stripe 82, and an area overlapping the South Pole Telescope surve y region. We describe our data analysis process and in particular our shape measurement using two independent shear measurement pipelines, METACALIBRATION and IM3SHAPE. The METACALIBRATION catalogue uses a Gaussian model with an innovative internal calibration scheme, and was applied to $riz$-bands, yielding 34.8M objects. The IM3SHAPE catalogue uses a maximum-likelihood bulge/disc model calibrated using simulations, and was applied to $r$-band data, yielding 21.9M objects. Both catalogues pass a suite of null tests that demonstrate their fitness for use in weak lensing science. We estimate the 1$sigma$ uncertainties in multiplicative shear calibration to be $0.013$ and $0.025$ for the METACALIBRATION and IM3SHAPE catalogues, respectively.
145 - N. Jeffrey , M. Gatti , C. Chang 2021
We present reconstructed convergence maps, textit{mass maps}, from the Dark Energy Survey (DES) third year (Y3) weak gravitational lensing data set. The mass maps are weighted projections of the density field (primarily dark matter) in the foreground of the observed galaxies. We use four reconstruction methods, each is a textit{maximum a posteriori} estimate with a different model for the prior probability of the map: Kaiser-Squires, null B-mode prior, Gaussian prior, and a sparsity prior. All methods are implemented on the celestial sphere to accommodate the large sky coverage of the DES Y3 data. We compare the methods using realistic $Lambda$CDM simulations with mock data that are closely matched to the DES Y3 data. We quantify the performance of the methods at the map level and then apply the reconstruction methods to the DES Y3 data, performing tests for systematic error effects. The maps are compared with optical foreground cosmic-web structures and are used to evaluate the lensing signal from cosmic-void profiles. The recovered dark matter map covers the largest sky fraction of any galaxy weak lensing map to date.
We present the first cosmology results from large-scale structure in the Dark Energy Survey (DES) spanning 5000 deg$^2$. We perform an analysis combining three two-point correlation functions (3$times$2pt): (i) cosmic shear using 100 million source g alaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions. The analysis was designed to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results. We model the data within the flat $Lambda$CDM and $w$CDM cosmological models. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude $S_8=0.776^{+0.017}_{-0.017}$ and matter density $Omega_{mathrm{m}} = 0.339^{+0.032}_{-0.031}$ in $Lambda$CDM, mean with 68% confidence limits; $S_8=0.775^{+0.026}_{-0.024}$, $Omega_{mathrm{m}} = 0.352^{+0.035}_{-0.041}$, and dark energy equation-of-state parameter $w=-0.98^{+0.32}_{-0.20}$ in $w$CDM. This combination of DES data is consistent with the prediction of the model favored by the Planck 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed $p=0.13$ to $0.48$. When combining DES 3$times$2pt data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find $p=0.34$. Combining all of these data sets with Planck CMB lensing yields joint parameter constraints of $S_8 = 0.812^{+0.008}_{-0.008}$, $Omega_{mathrm{m}} = 0.306^{+0.004}_{-0.005}$, $h=0.680^{+0.004}_{-0.003}$, and $sum m_{ u}<0.13 ;mathrm{eV; (95% ;CL)}$ in $Lambda$CDM; $S_8 = 0.812^{+0.008}_{-0.008}$, $Omega_{mathrm{m}} = 0.302^{+0.006}_{-0.006}$, $h=0.687^{+0.006}_{-0.007}$, and $w=-1.031^{+0.030}_{-0.027}$ in $w$CDM. (abridged)
101 - C. Chang , A. Pujol , B. Mawdsley 2017
We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than previous work, is constructed over a contiguous $approx1,500 $deg$^2$, covering a comoving volume of $ approx10 $Gpc$^3$. The effects of masking, sampling, and noise are tested using simulations. We generate weak lensing maps from two DES Y1 shear catalogs, Metacalibration and Im3shape, with sources at redshift $0.2<z<1.3,$ and in each of four bins in this range. In the highest signal-to-noise map, the ratio between the mean signal-to-noise in the E-mode and the B-mode map is $sim$1.5 ($sim$2) when smoothed with a Gaussian filter of $sigma_{G}=30$ (80) arcminutes. The second and third moments of the convergence $kappa$ in the maps are in agreement with simulations. We also find no significant correlation of $kappa$ with maps of potential systematic contaminants. Finally, we demonstrate two applications of the mass maps: (1) cross-correlation with different foreground tracers of mass and (2) exploration of the largest peaks and voids in the maps.
123 - J. Prat , C. Sanchez , Y. Fang 2017
We present galaxy-galaxy lensing measurements from 1321 sq. deg. of the Dark Energy Survey (DES) Year 1 (Y1) data. The lens sample consists of a selection of 660,000 red galaxies with high-precision photometric redshifts, known as redMaGiC, split int o five tomographic bins in the redshift range $0.15 < z < 0.9$. We use two different source samples, obtained from the Metacalibration (26 million galaxies) and Im3shape (18 million galaxies) shear estimation codes, which are split into four photometric redshift bins in the range $0.2 < z < 1.3$. We perform extensive testing of potential systematic effects that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observational properties. Covariances are obtained from jackknife subsamples of the data and validated with a suite of log-normal simulations. We use the shear-ratio geometric test to obtain independent constraints on the mean of the source redshift distributions, providing validation of those obtained from other photo-$z$ studies with the same data. We find consistency between the galaxy bias estimates obtained from our galaxy-galaxy lensing measurements and from galaxy clustering, therefore showing the galaxy-matter cross-correlation coefficient $r$ to be consistent with one, measured over the scales used for the cosmological analysis. The results in this work present one of the three two-point correlation functions, along with galaxy clustering and cosmic shear, used in the DES cosmological analysis of Y1 data, and hence the methodology and the systematics tests presented here provide a critical input for that study as well as for future cosmological analyses in DES and other photometric galaxy surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا