ترغب بنشر مسار تعليمي؟ اضغط هنا

Helioseismic Modeling of Background Flows

59   0   0.0 ( 0 )
 نشر من قبل Andrey Stejko
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a 3-dimensional (3D) numerical solver of the linearized compressible Euler equations (GALE -- Global Acoustic Linearized Euler), used to model acoustic oscillations throughout the solar interior. The governing equations are solved in conservation form on a fully global spherical mesh ($0 le phi le 2pi$, $0 le theta le pi$, $0 le r le R_{odot}$) over a background state generated by the standard Solar Model S. We implement an efficient pseudo-spectral computational method to calculate the contribution of the compressible material derivative dyad to internal velocity perturbations, computing oscillations over arbitrary 3D background velocity fields. This model offers a foundation for a forward-modeling approach, using helioseismology techniques to explore various regimes of internal mass flows. We demonstrate the efficacy of the numerical method presented in this paper by reproducing observed solar power spectra, showing rotational splitting due to differential rotation, and applying local helioseismology techniques to measure travel times created by a simple model of single-cell meridional circulation.



قيم البحث

اقرأ أيضاً

365 - A.C. Birch , L. Gizon 2010
Time-distance helioseismology is a technique for measuring the time for waves to travel from one point on the solar surface to another. These wave travel times are affected by advection by subsurface flows. Inferences of plasma flows based on observe d travel times depend critically on the ability to accurately model the effects of subsurface flows on time-distance measurements. We present a Born approximation based computation of the sensitivity of time distance travel times to weak, steady, inhomogeneous subsurface flows. Three sensitivity functions are obtained, one for each component of the 3D vector flow. We show that the depth sensitivity of travel times to horizontally uniform flows is given approximately by the kinetic energy density of the oscillation modes which contribute to the travel times. For flows with strong depth dependence, the Born approximation can give substantially different results than the ray approximation.
Knowledge about the background solar wind plays a crucial role in the framework of space weather forecasting. In-situ measurements of the background solar wind are only available for a few points in the heliosphere where spacecraft are located, there fore we have to rely on heliospheric models to derive the distribution of solar wind parameters in interplanetary space. We test the performance of different solar wind models, namely Magnetohydrodynamic Algorithm outside a Sphere/ENLIL (MAS/ENLIL), Wang-Sheeley-Arge/ENLIL (WSA/ENLIL), and MAS/MAS, by comparing model results with in-situ measurements from spacecraft located at 1 AU distance to the Sun (ACE, Wind). To exclude the influence of interplanetary coronal mass ejections (ICMEs), we chose the year 2007 as a time period with low solar activity for our comparison. We found that the general structure of the background solar wind is well reproduced by all models. The best model results were obtained for the parameter solar wind speed. However, the predicted arrival times of high-speed solar wind streams have typical uncertainties of the order of about one day. Comparison of model runs with synoptic magnetic maps from different observatories revealed that the choice of the synoptic map significantly affects the model performance.
Helioseismic holography is an imaging technique used to study heterogeneities and flows in the solar interior from observations of solar oscillations at the surface. Holograms contain noise due to the stochastic nature of solar oscillations. We provi de a theoretical framework for modeling signal and noise in Porter-Bojarski helioseismic holography. The wave equation may be recast into a Helmholtz-like equation, so as to connect with the acoustics literature and define the holography Greens function in a meaningful way. Sources of wave excitation are assumed to be stationary, horizontally homogeneous, and spatially uncorrelated. Using the first Born approximation we calculate holograms in the presence of perturbations in sound-speed, density, flows, and source covariance, as well as the noise level as a function of position. This work is a direct extension of the methods used in time-distance helioseismology to model signal and noise. To illustrate the theory, we compute the hologram intensity numerically for a buried sound-speed perturbation at different depths in the solar interior. The reference Greens function is obtained for a spherically-symmetric solar model using a finite-element solver in the frequency domain. Below the pupil area on the surface, we find that the spatial resolution of the hologram intensity is very close to half the local wavelength. For a sound-speed perturbation of size comparable to the local spatial resolution, the signal-to-noise ratio is approximately constant with depth. Averaging the hologram intensity over a number $N$ of frequencies above 3 mHz increases the signal-to-noise ratio by a factor nearly equal to the square root of $N$. This may not be the case at lower frequencies, where large variations in the holographic signal are due to the individual contributions of the long-lived modes of oscillation.
The solar atmosphere is extremely dynamic, and many important phenomena develop on small scales that are unresolved in observations with the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). For correct calibr ation and interpretation of the observations, it is very important to investigate the effects of small-scale structures and dynamics on the HMI observables, such as Doppler shift, continuum intensity, spectral line depth, and width. We use 3D radiative hydrodynamics simulations of the upper turbulent convective layer and the atmosphere of the Sun, and a spectro-polarimetric radiative transfer code to study observational characteristics of the Fe I 6173A line observed by HMI in quiet-Sun regions. We use the modeling results to investigate the sensitivity of the line Doppler shift to plasma velocity, and also sensitivities of the line parameters to plasma temperature and density, and determine effective line formation heights for observations of solar regions located at different distances from the disc center. These estimates are important for the interpretation of helioseismology measurements. In addition, we consider various center-to-limb effects, such as convective blue-shift, variations of helioseismic travel-times, and the concave Sun effect, and show that the simulations can qualitatively reproduce the observed phenomena, indicating that these effects are related to a complex interaction of the solar dynamics and radiative transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا