ترغب بنشر مسار تعليمي؟ اضغط هنا

Field demonstration of distributed quantum sensing without post-selection

112   0   0.0 ( 0 )
 نشر من قبل Qiang Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Distributed quantum sensing can provide quantum-enhanced sensitivity beyond the shot-noise limit (SNL) for sensing spatially distributed parameters. To date, distributed quantum sensing experiments have been mostly accomplished in laboratory environments without a real space separation for the sensors. In addition, the post-selection is normally assumed to demonstrate the sensitivity advantage over the SNL. Here, we demonstrate distributed quantum sensing in field and show the unconditional violation (without post-selection) of SNL up to 0.916 dB for the field distance of 240 m. The achievement is based on a loophole free Bell test setup with entangled photon pairs at the averaged heralding efficiency of 73.88%. Moreover, to test quantum sensing in real life, we demonstrate the experiment for long distances (with 10-km fiber) together with the sensing of a completely random and unknown parameter. The results represent an important step towards a practical quantum sensing network for widespread applications.


قيم البحث

اقرأ أيضاً

A weak measurement performed on a pre- and post-selected quantum system can result in an average value that lies outside of the observables spectrum. This effect, usually referred to as an anomalous weak value, is generally believed to be possible on ly when a non-trivial post-selection is performed, i.e., when only a particular subset of the data is considered. Here we show, however, that this is not the case in general: in scenarios in which several weak measurements are sequentially performed, an anomalous weak value can be obtained without post-selection, i.e., without discarding any data. We discuss several questions that this raises about the subtle relation between weak values and pointer positions for sequential weak measurements. Finally, we consider some implications of our results for the problem of distinguishing different causal structures.
121 - Mu Yang , Qiang Li , Zheng-Hao Liu 2019
Weak measurement has been shown to play important roles in the investigation of both fundamental and practical problems. Anomalous weak values are generally believed to be observed only when post-selection is performed, i.e, only a particular subset of the data is considered. Here, we experimentally demonstrated an anomalous weak value can be obtained without discarding any data by performing a sequential weak measurement on a single-qubit system. By controlling the blazing density of the hologram on a spatial light modulator, the measurement strength can be conveniently controlled. Such an anomalous phenomenon disappears when the measurement strength becomes strong. Moreover, we find that the anomalous weak value can not be observed without post-selection when the sequential measurement is performed on each of the components of a two-qubit system, which confirms that the observed anomalous weak value is based on sequential weak measurement of two noncommutative operators.
Quantum metrology aims to enhance the precision of various measurement tasks by taking advantages of quantum properties. In many scenarios, precision is not the sole target; the acquired information must be protected once it is generated in the sensi ng process. Considering a remote sensing scenario where a local site performs cooperative sensing with a remote site to collect private information at the remote site, the loss of sensing data inevitably causes private information to be revealed. Quantum key distribution is known to be a reliable solution for secure data transmission, however, it fails if an eavesdropper accesses the sensing data generated at a remote site. In this study, we demonstrate that by sharing entanglement between local and remote sites, secure quantum remote sensing can be realized, and the secure level is characterized by asymmetric Fisher information gain. Concretely, only the local site can acquire the estimated parameter accurately with Fisher information approaching 1. In contrast, the accessible Fisher information for an eavesdropper is nearly zero even if he/she obtains the raw sensing data at the remote site. This achievement is primarily due to the nonlocal calibration and steering of the probe state at the remote site. Our results explore one significant advantage of ``quantumness and extend the notion of quantum metrology to the security realm.
We report on the implementation of a new interferometric scheme that allows the generation of photon pairs entangled in the time-energy degree of freedom. This scheme does not require any kind of temporal post-selection on the generated pairs and can be used even with lasers with short coherence time.
We present a scheme to conditionally engineer an optical quantum system via continuous-variable measurements. This scheme yields high-fidelity squeezed single photon and superposition of coherent states, from input single and two photon Fock states r espectively. The input Fock state is interacted with an ancilla squeezed vacuum state using a beam-splitter. We transform the quantum system by post-selecting on the continuous-observable measurement outcome of the ancilla state. We experimentally demonstrate the principles of this scheme using displaced coherent states and measure experimentally fidelities that are only achievable using quantum resources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا