ترغب بنشر مسار تعليمي؟ اضغط هنا

Straggler Mitigation through Unequal Error Protection for Distributed Matrix Multiplication

109   0   0.0 ( 0 )
 نشر من قبل Busra Tegin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-scale machine learning and data mining methods routinely distribute computations across multiple agents to parallelize processing. The time required for computation at the agents is affected by the availability of local resources giving rise to the straggler problem in which the computation results are held back by unresponsive agents. For this problem, linear coding of the matrix sub-blocks can be used to introduce resilience toward straggling. The Parameter Server (PS) utilizes a channel code and distributes the matrices to the workers for multiplication. It then produces an approximation to the desired matrix multiplication using the results of the computations received at a given deadline. In this paper, we propose to employ Unequal Error Protection (UEP) codes to alleviate the straggler problem. The resiliency level of each sub-block is chosen according to its norm as blocks with larger norms have higher effects on the result of the matrix multiplication. We validate the effectiveness of our scheme both theoretically and through numerical evaluations. We derive a theoretical characterization of the performance of UEP using random linear codes, and compare it the case of equal error protection. We also apply the proposed coding strategy to the computation of the back-propagation step in the training of a Deep Neural Network (DNN), for which we investigate the fundamental trade-off between precision and the time required for the computations.

قيم البحث

اقرأ أيضاً

Large-scale machine learning and data mining methods routinely distribute computations across multiple agents to parallelize processing. The time required for the computations at the agents is affected by the availability of local resources and/or po or channel conditions giving rise to the straggler problem. As a remedy to this problem, we employ Unequal Error Protection (UEP) codes to obtain an approximation of the matrix product in the distributed computation setting to provide higher protection for the blocks with higher effect on the final result. We characterize the performance of the proposed approach from a theoretical perspective by bounding the expected reconstruction error for matrices with uncorrelated entries. We also apply the proposed coding strategy to the computation of the back-propagation step in the training of a Deep Neural Network (DNN) for an image classification task in the evaluation of the gradients. Our numerical experiments show that it is indeed possible to obtain significant improvements in the overall time required to achieve the DNN training convergence by producing approximation of matrix products using UEP codes in the presence of stragglers.
Distributed implementations of gradient-based methods, wherein a server distributes gradient computations across worker machines, need to overcome two limitations: delays caused by slow running machines called stragglers, and communication overheads. Recently, Ye and Abbe [ICML 2018] proposed a coding-theoretic paradigm to characterize a fundamental trade-off between computation load per worker, communication overhead per worker, and straggler tolerance. However, their proposed coding schemes suffer from heavy decoding complexity and poor numerical stability. In this paper, we develop a communication-efficient gradient coding framework to overcome these drawbacks. Our proposed framework enables using any linear code to design the encoding and decoding functions. When a particular code is used in this framework, its block-length determines the computation load, dimension determines the communication overhead, and minimum distance determines the straggler tolerance. The flexibility of choosing a code allows us to gracefully trade-off the straggler threshold and communication overhead for smaller decoding complexity and higher numerical stability. Further, we show that using a maximum distance separable (MDS) code generated by a random Gaussian matrix in our framework yields a gradient code that is optimal with respect to the trade-off and, in addition, satisfies stronger guarantees on numerical stability as compared to the previously proposed schemes. Finally, we evaluate our proposed framework on Amazon EC2 and demonstrate that it reduces the average iteration time by 16% as compared to prior gradient coding schemes.
We present a novel autoencoder-based approach for designing codes that provide unequal error protection (UEP) capabilities. The proposed design is based on a generalization of an autoencoder loss function that accommodates both message-wise and bit-w ise UEP scenarios. In both scenarios, the generalized loss function can be adjusted using an associated weight vector to trade off error probabilities corresponding to different importance classes. For message-wise UEP, we compare the proposed autoencoder-based UEP codes with a union of random coset codes. For bit-wise UEP, the proposed codes are compared with UEP rateless spinal codes and the superposition of random Gaussian codes. In all cases, the autoencoder-based codes show superior performance while providing design simplicity and flexibility in trading off error protection among different importance classes.
In distributed synchronous gradient descent (GD) the main performance bottleneck for the per-iteration completion time is the slowest textit{straggling} workers. To speed up GD iterations in the presence of stragglers, coded distributed computation t echniques are implemented by assigning redundant computations to workers. In this paper, we propose a novel gradient coding (GC) scheme that utilizes dynamic clustering, denoted by GC-DC, to speed up the gradient calculation. Under time-correlated straggling behavior, GC-DC aims at regulating the number of straggling workers in each cluster based on the straggler behavior in the previous iteration. We numerically show that GC-DC provides significant improvements in the average completion time (of each iteration) with no increase in the communication load compared to the original GC scheme.
We consider the problem of designing codes with flexible rate (referred to as rateless codes), for private distributed matrix-matrix multiplication. A master server owns two private matrices $mathbf{A}$ and $mathbf{B}$ and hires worker nodes to help computing their multiplication. The matrices should remain information-theoretically private from the workers. Codes with fixed rate require the master to assign tasks to the workers and then wait for a predetermined number of workers to finish their assigned tasks. The size of the tasks, hence the rate of the scheme, depends on the number of workers that the master waits for. We design a rateless private matrix-matrix multiplication scheme, called RPM3. In contrast to fixed-rate schemes, our scheme fixes the size of the tasks and allows the master to send multiple tasks to the workers. The master keeps sending tasks and receiving results until it can decode the multiplication; rendering the scheme flexible and adaptive to heterogeneous environments. Despite resulting in a smaller rate than known straggler-tolerant schemes, RPM3 provides a smaller mean waiting time of the master by leveraging the heterogeneity of the workers. The waiting time is studied under two different models for the workers service time. We provide upper bounds for the mean waiting time under both models. In addition, we provide lower bounds on the mean waiting time under the worker-dependent fixed service time model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا