ﻻ يوجد ملخص باللغة العربية
Teleoperation (i.e., controlling a robot with human motion) proves promising in enabling a humanoid robot to move as dynamically as a human. But how to map human motion to a humanoid robot matters because a human and a humanoid robot rarely have identical topologies and dimensions. This work presents an experimental study that utilizes reaction tests to compare the proposed joint space mapping and the proposed task space mapping for dynamic teleoperation of an anthropomorphic robotic arm that possesses human-level dynamic motion capabilities. The experimental results suggest that the robot achieved similar and, in some cases, human-level dynamic performances with both mappings for the six participating human subjects. All subjects became proficient at teleoperating the robot with both mappings after practice, despite that the subjects and the robot differed in size and link length ratio and that the teleoperation required the subjects to move unintuitively. Yet, most subjects developed their teleoperation proficiencies more quickly with the task space mapping than with the joint space mapping after similar amounts of practice. This study also indicates the potential values of a three-dimensional task space mapping, a teleoperation training simulator, and force feedback to the human pilot for intuitive and dynamic teleoperation of a humanoid robots arms.
We propose a representation for the set of forces a robot can counteract using full system dynamics: the residual force polytope. Given the nominal torques required by a dynamic motion, this representation models the forces which can be sustained wit
The compliance of soft robotic arms renders the development of accurate kinematic & dynamical models especially challenging. The most widely used model in soft robotic kinematics assumes Piecewise Constant Curvature (PCC). However, PCC fails to effec
Most current anthropomorphic robotic hands can realize part of the human hand functions, particularly for object grasping. However, due to the complexity of the human hand, few current designs target at daily object manipulations, even for simple act
In this work, we report on the integrated sensorimotor control of the Pisa/IIT SoftHand, an anthropomorphic soft robot hand designed around the principle of adaptive synergies, with the BRL tactile fingertip (TacTip), a soft biomimetic optical tactil
Remote teleoperation of robots can broaden the reach of domain specialists across a wide range of industries such as home maintenance, health care, light manufacturing, and construction. However, current direct control methods are impractical, and ex