ﻻ يوجد ملخص باللغة العربية
Most physics theories are deterministic, with the notable exception of quantum mechanics which, however, comes plagued by the so-called measurement problem. This state of affairs might well be due to the inability of standard mathematics to speak of indeterminism, its inability to present us a worldview in which new information is created as time passes. In such a case, scientific determinism would only be an illusion due to the timeless mathematical language scientists use. To investigate this possibility it is necessary to develop an alternative mathematical language that is both powerful enough to allow scientists to compute predictions and compatible with indeterminism and the passage of time. We argue that intuitionistic mathematics provides such a language and we illustrate it in simple terms.
Physics is formulated in terms of timeless classical mathematics. A formulation on the basis of intuitionist mathematics, built on time-evolving processes, would offer a perspective that is closer to our experience of physical reality.
In this paper, we examine the relationship between general relativity and the theory of Einstein algebras. We show that according to a formal criterion for theoretical equivalence recently proposed by Halvorson (2012, 2015) and Weatherall (2015), the two are equivalent theories.
During the First World War, the status of energy conservation in general relativity was one of the most hotly debated questions surrounding Einsteins new theory of gravitation. His approach to this aspect of general relativity differed sharply from a
We consider various curious features of general relativity, and relativistic field theory, in two spacetime dimensions. In particular, we discuss: the vanishing of the Einstein tensor; the failure of an initial-value formulation for vacuum spacetimes
A classic problem in general relativity, long studied by both physicists and philosophers of physics, concerns whether the geodesic principle may be derived from other principles of the theory, or must be posited independently. In a recent paper [Ger