ترغب بنشر مسار تعليمي؟ اضغط هنا

Cable Loop Calibration System for Jiangmen Underground Neutrino Observatory

74   0   0.0 ( 0 )
 نشر من قبل Yuanyuan Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A cable loop source calibration system is developed for the Jiangmen Underground Neutrino Observatory, a 20 kton spherical liquid scintillator neutrino experiment. This system is capable of deploying radioactive sources into different positions of the detector in a vertical plane with a few-cm position accuracy. The design and the performance of the prototype are reported in this paper.

قيم البحث

اقرأ أيضاً

91 - Cong Guo 2019
The Jiangmen Underground Neutrino Observatory is a multipurpose neutrino experiment designed to determine neutrino mass hierarchy and precisely measure oscillation parameters by detecting reactor neutrinos from the Yangjiang and Taishan Nuclear Power Plants, observe supernova neutrinos, study the atmospheric, solar neutrinos and geo-neutrinos, and perform exotic searches, with a 20-thousand-ton liquid scintillator detector of unprecedented 3% energy resolution (at 1 MeV) at 700-meter deep underground. In this proceeding, the subsystems of the experiment, including the cental detector, the online scintillator internal radioactivity investigation system, the PMT, the veto detector, the calibration system and the taishan antineutrino observatory, will be described. The construction is expected to be completed in 2021.
150 - C.Guo , Y.P.Zhang , J.C.Liu 2018
The Jiangmen Underground Neutrino Observatory (JUNO), a 20ktons multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. Due to low background requirement of the experiment, a multi-veto system ,which consists of a water Cherenkov detector and a top tracker detector, is required. In order to keep the water quality good and remove the radon in the water, a ultra-pure water system, a radon removal system and radon concentration measurement system have been designed. In this paper, the radon removal equipments and its radon removal limit will be presented.
The Jiangmen Underground Neutrino Observatory is proposed to determine neutrino mass hierarchy using a 20~ktonne liquid scintillator detector. Strict radio-purity requirements have been put forward for all the components of the detector. According to the MC simulation results, the radon dissolved in the water Cherenkov detector should be below 200~mBq/m$^3$. Radium, the progenitor of radon, should also be taken seriously into account. In order to measure the radium concentration in water, a radium measurement system, which consists of a radium extraction system, a radon emanation chamber and a radon concentration measurement system, has been developed. In this paper, the updated radon concentration in gas measurement system with a one-day-measurement sensitivity of $sim$5~mBq/m$^3$, the detail of the development of the radium concentration in water measurement system with a sensitivity of $sim$23~mBq/m$^3$ as well as the measurement results of Daya Bay water samples will be presented.
An electron accelerator in the 100 MeV range, similar to the one used at BNLs Accelerator test Facility, for example, would have some advantages as a calibration tool for water cerenkov or Liquid Argon neutrino detectors. We describe a compact second ary beam design that could be used for this application.
The Daya Bay Reactor Neutrino Experiment has measured the last unknown neutrino mixing angle, {theta}13, to be non-zero at the 7.7{sigma} level. This is the most precise measurement to {theta}13 to date. To further enhance the understanding of the re sponse of the antineutrino detectors (ADs), a detailed calibration of an AD with the Manual Calibration System (MCS) was undertaken during the summer 2012 shutdown. The MCS is capable of placing a radioactive source with a positional accuracy of 25 mm in R direction, 20 mm in Z axis and 0.5{deg} in {Phi} direction. A detailed description of the MCS is presented followed by a summary of its performance in the AD calibration run.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا