ترغب بنشر مسار تعليمي؟ اضغط هنا

New Developments in Flavor Evolution of a Dense Neutrino Gas

131   0   0.0 ( 0 )
 نشر من قبل Irene Tamborra
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrino-neutrino refraction dominates the flavor evolution in core-collapse supernovae, neutron-star mergers, and the early universe. Ordinary neutrino flavor conversion develops on timescales determined by the vacuum oscillation frequency. However, when the neutrino density is large enough, collective flavor conversion may arise because of pairwise neutrino scattering. Pairwise conversion is deemed to be fast as it is expected to occur on timescales that depend on the neutrino-neutrino interaction energy (i.e., on the neutrino number density) and is regulated by the angular distributions of electron neutrinos and antineutrinos. The enigmatic phenomenon of fast pairwise conversion has been overlooked for a long time. However, because of the fast conversion rate, pairwise conversion may possibly occur in the proximity of the neutrino decoupling region with yet to be understood implications for the hydrodynamics of astrophysical sources and the synthesis of the heavy elements. We review the physics of this fascinating phenomenon and its implications for neutrino-dense sources.


قيم البحث

اقرأ أيضاً

We investigate the importance of going beyond the mean-field approximation in the dynamics of collective neutrino oscillations. To expand our understanding of the coherent neutrino oscillation problem, we apply concepts from many-body physics and qua ntum information theory. Specifically, we use measures of nontrivial correlations (otherwise known as entanglement) between the constituent neutrinos of the many-body system, such as the entanglement entropy and the Bloch vector of the reduced density matrix. The relevance of going beyond the mean field is demonstrated by comparisons between the evolution of the neutrino state in the many-body picture vs the mean-field limit, for different initial conditions.
A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, s tationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this paper we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.
We present a method to find the stationary solutions for fast flavor oscillations of a homogeneous dense neutrino gas. These solutions correspond to collective rotation of all neutrino polarization vectors around a fixed axis in the flavor space on a verage, and are conveniently studied in the co-rotating frame. We show that these solutions can account for the numerical results of explicit evolution calculations, and that even with the simplest assumption of adiabatic evolution, they can provide the average survival probabilities to good approximation. We also discuss improvement of these solutions and their use as estimates of the effects of fast oscillations in astrophysical environments.
We assess the utility of an optimization-based data assimilation (D.A.) technique for treating the problem of nonlinear neutrino flavor transformation in core collapse supernovae. D.A. uses measurements obtained from a physical system to estimate the state variable evolution and parameter values of the associated model. Formulated as an optimization procedure, D.A. can offer an integration-blind approach to predicting model evolution, which offers an advantage for models that thwart solution via traditional numerical integration techniques. Further, D.A. performs most optimally for models whose equations of motion are nonlinearly coupled. In this exploratory work, we consider a simple steady-state model with two mono-energetic neutrino beams coherently interacting with each other and a background medium. As this model can be solved via numerical integration, we have an independent consistency check for D.A. solutions. We find that the procedure can capture key features of flavor evolution over the entire trajectory, even given measurements of neutrino flavor only at the endpoint, and with an assumed known initial flavor distribution. Further, the procedure permits an examination of the sensitivity of flavor evolution to estimates of unknown model parameters, locates degeneracies in parameter space, and can identify the specific measurements required to break those degeneracies.
We review theoretical developments in studies of dense matter and its phase structure of relevance to compact stars. Observational data on compact stars, which can constrain the properties of dense matter, are presented critically and interpreted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا