ﻻ يوجد ملخص باللغة العربية
We consider a system of $M$ particles in contact with a heat reservoir of $Ngg M$ particles. The evolution in the system and the reservoir, together with their interaction, are modeled via the Kacs Master Equation. We chose the initial distribution with total energy $N+M$ and show that if the reservoir is initially in equilibrium, that is if the initial distribution depends only on the energy of the particle in the reservoir, then the entropy of the system decay exponentially to a very small value. We base our proof on a similar property for the Information. A similar argument allows us to greatly simplify the proof of the main result in [2].
We consider solutions to the Kac master equation for initial conditions where $N$ particles are in a thermal equilibrium and $Mle N$ particles are out of equilibrium. We show that such solutions have exponential decay in entropy relative to the therm
We study a model of random colliding particles interacting with an infinite reservoir at fixed temperature and chemical potential. Interaction between the particles is modeled via a Kac master equation cite{kac}. Moreover, particles can leave the sys
In this paper we study Lie symmetries, Kac-Moody-Virasoro algebras, similarity reductions and particular solutions of two different recently introduced (2+1)-dimensional nonlinear evolution equations, namely (i) (2+1)-dimensional breaking soliton equ
This article reviews recent work on the Kac master equation and its low dimensional counterpart, the Kac equation.
We use the Fourier based Gabetta-Toscani-Wennberg (GTW) metric $d_2$ to study the rate of convergence to equilibrium for the Kac model in $1$ dimension. We take the initial velocity distribution of the particles to be a Borel probability measure $mu$