ترغب بنشر مسار تعليمي؟ اضغط هنا

New insights into the formation and growth of boson stars in dark matter halos

282   0   0.0 ( 0 )
 نشر من قبل Jiajun Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work studies the formation and growth of boson stars and their surrounding miniclusters by gravitational condensation using non-linear dynamical numerical methods. Fully dynamical attractive and repulsive self-interactions are also considered for the first time. In the case of pure gravity, we numerically prove that the growth of boson stars inside halos slows down and saturates as has been previously conjectured, and detail its conditions. Self-interactions are included using the Gross-Pitaevskii-Poisson equations. We find that in the case of strong attractive self-interactions the boson stars can become unstable and collapse, in agreement with previous stationary computations. At even stronger coupling, the condensate fragments. Repulsive self-interactions, as expected, promote boson star formation, and lead to solutions with larger radii.



قيم البحث

اقرأ أيضاً

We observed the AGB stars S Ori, GX Mon and R Cnc with the MIDI instrument at the VLTI. We compared the data to radiative transfer models of the dust shells, where the central stellar intensity profiles were described by dust-free dynamic model atmos pheres. We used Al2O3 and warm silicate grains. Our S Ori and R Cnc data could be well described by an Al2O3 dust shell alone, and our GX Mon data by a mix of an Al2O3 and a silicate shell. The best-fit parameters for S Ori and R Cnc included photospheric angular diameters Theta(Phot) of 9.7+/-1.0mas and 12.3+/-1.0mas, optical depths tau(V)(Al2O3) of 1.5+/-0.5 and 1.35+/-0.2, and inner radii R(in) of 1.9+/-0.3R(Phot) and 2.2+/-0.3R(Phot), respectively. Best-fit parameters for GX Mon were Theta(Phot)=8.7+/-1.3mas, tau(V)(Al2O3)=1.9+/-0.6, R(in)(Al2O3)=2.1+/-0.3R(Phot), tau(V)(silicate)=3.2+/-0.5, and R(in)(silicate)=4.6+/-0.2R(Phot). Our model fits constrain the chemical composition and the inner boundary radii of the dust shells, as well as the photospheric angular diameters. Our interferometric results are consistent with Al2O3 grains condensing close to the stellar surface at about 2 stellar radii, co-located with the extended atmosphere and SiO maser emission, and warm silicate grains at larger distances of about 4--5 stellar radii. We verified that the number densities of aluminum can match that of the best-fit Al2O3 dust shell near the inner dust radius in sufficiently extended atmospheres, confirming that Al2O3 grains can be seed particles for the further dust condensation. Together with literature data of the mass-loss rates, our sample is consistent with a hypothesis that stars with low mass-loss rates form primarily dust that preserves the spectral properties of Al2O3, and stars with higher mass-loss rate form dust with properties of warm silicates.
147 - Yuxiang Qin 2017
We investigate how the hydrostatic suppression of baryonic accretion affects the growth rate of dark matter halos during the Epoch of Reionization. By comparing halo properties in a simplistic hydrodynamic simulation in which gas only cools adiabatic ally, with its collisionless equivalent, we find that halo growth is slowed as hydrostatic forces prevent gas from collapsing. In our simulations, at the high redshifts relevant for reionization (between ${sim}6$ and ${sim}11$), halos that host dwarf galaxies ($lesssim 10^{9} mathrm{M_odot}$) can be reduced by up to a factor of 2 in mass due to the hydrostatic pressure of baryons. Consequently, the inclusion of baryonic effects reduces the amplitude of the low mass tail of the halo mass function by factors of 2 to 4. In addition, we find that the fraction of baryons in dark matter halos hosting dwarf galaxies at high redshift never exceeds ${sim}90%$ of the cosmic baryon fraction. When implementing baryonic processes, including cooling, star formation, supernova feedback and reionization, the suppression effects become more significant with further reductions of ${sim}30%$ to 60%. Although convergence tests suggest that the suppression may become weaker in higher resolution simulations, this suppressed growth will be important for semi-analytic models of galaxy formation, in which the halo mass inherited from an underlying N-body simulation directly determines galaxy properties. Based on the adiabatic simulation, we provide tables to account for these effects in N-body simulations, and present a modification of the halo mass function along with explanatory analytic calculations.
We consider the implications of an ultra-light fermionic dark matter candidate that carries baryon number. This naturally arises if dark matter has a small charge under standard model baryon number whilst having an asymmetry equal and opposite to tha t in the visible universe. A prototypical model is a theory of dark baryons charged under a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is naturally at nuclear density, allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the neutron star, which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices.
100 - Tomoaki Ishiyama 2014
The smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as $rho propto r^{-(1.5-1.3)}$. We present results of very lar ge cosmological $N$-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. We confirmed early studies that the inner density cusps are steeper in halos at the free streaming scale. The cusp slope gradually becomes shallower as the halo mass increases. The slope of halos 50 times more massive than the smallest halo is approximately $-1.3$. No strong correlation exists between inner slope and the collapse epoch. The cusp slope of halos above the free streaming scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be $60-70$, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Microhalos could still exist in the present universe with the same steep density profiles.
Using observations in the COSMOS field, we report an intriguing correlation between the star formation activity of massive (~10^{11.4}msol) central galaxies, their stellar masses, and the large-scale (~10 Mpc) environments of their group-mass (~10^{1 3.6}msol) dark matter halos. Probing the redshift range z=[0.2,1.0], our measurements come from two independent sources: an X-ray detected group catalog and constraints on the stellar-to-halo mass relation derived from a combination of clustering and weak lensing statistics. At z=1, we find that the stellar mass in star-forming centrals is a factor of two less than in passive centrals at the same halo mass. This implies that the presence or lack of star formation in group-scale centrals cannot be a stochastic process. By z=0, the offset reverses, probably as a result of the different growth rates of these objects. A similar but weaker trend is observed when dividing the sample by morphology rather than star formation. Remarkably, we find that star-forming centrals at z~1 live in groups that are significantly more clustered on 10 Mpc scales than similar mass groups hosting passive centrals. We discuss this signal in the context of halo assembly and recent simulations, suggesting that star-forming centrals prefer halos with higher angular momentum and/or formation histories with more recent growth; such halos are known to evolve in denser large-scale environments. If confirmed, this would be evidence of an early established link between the assembly history of halos on large scales and the future properties of the galaxies that form inside them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا