ﻻ يوجد ملخص باللغة العربية
We propose an Exponential DG approach for numerically solving partial differential equations (PDEs). The idea is to decompose the governing PDE operators into linear (fast dynamics extracted by linearization) and nonlinear (the remaining after removing the former) parts, on which we apply the discontinuous Galerkin (DG) spatial discretization. The resulting semi-discrete system is then integrated using exponential time-integrators: exact for the former and approximate for the latter. By construction, our approach i) is stable with a large Courant number (Cr > 1); ii) supports high-order solutions both in time and space; iii) is computationally favorable compared to IMEX DG methods with no preconditioner; iv) requires comparable computational time compared to explicit RKDG methods, while having time stepsizes orders magnitude larger than maximal stable time stepsizes for explicit RKDG methods; v) is scalable in a modern massively parallel computing architecture by exploiting Krylov-subspace matrix-free exponential time integrators and compact communication stencil of DG methods. Various numerical results for both Burgers and Euler equations are presented to showcase these expected properties. For Burgers equation, we present detailed stability and convergence analyses for the exponential Euler DG scheme.
The selection of time step plays a crucial role in improving stability and efficiency in the Discontinuous Galerkin (DG) solution of hyperbolic conservation laws on adaptive moving meshes that typically employs explicit stepping. A commonly used sele
A series of shock capturing schemes based on nonuniform nonlinear weighted interpolation on nonuniform points are developed for conservation laws. Smoothness indicator and discrete conservation laws are discussed. To make fair comparisons between dif
We formulate an oversampled radial basis function generated finite difference (RBF-FD) method to solve time-dependent nonlinear conservation laws. The analytic solutions of these problems are known to be discontinuous, which leads to occurrence of no
In this paper, a fifth-order Hermite weighted essentially non-oscillatory (HWENO) scheme with artificial linear weights is proposed for one and two dimensional hyperbolic conservation laws, where the zeroth-order and the first-order moments are used
In this paper, we propose a hybrid finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme for solving one and two dimensional hyperbolic conservation laws. The zeroth-order and the first-order moments are used in the spatial recons